
Data Engine

Thinking
FastChangeCo’s journey

towards a fully ²exible data solution

Imprint

Data Engine Thinking

By Roelant Vos and Dirk Lerner

Published by

Vos & Lerner Data Engine Thinking GbR

Astrid-Lindgren-Straße 4

64331 Weiterstadt

Germany

https://dataenginethinking.com

info@dataenginethinking.com

Layout, typesetting, cover

Romi Klockau | linkedin.com/in/romi-klockau

Graphics and illustration

Matthias Seifert | www.matthias-seifert.com

All rights reserved. No part of this book may be

reproduced or transmitted in any form or by any

means —electronic, mechanical, photocopying,

recording, or any information storage and retrieval

system— without written permission from the

publisher, except for brief quotations in reviews.

All trade and product names mentioned in this book

are trademarks, registered trademarks, or service

marks of their respective owners and should be

treated accordingly.

Printing history

First edition, 2025

Copyright © 2025 by Roelant Vos and Dirk Lerner

ISBN 978-3-9827180-0-2

Print softcover edition

ISBN 978-3-9827180-1-9

Kindle Replica-eBook edition

ISBN 978-3-9827180-2-6

PDF edition

ISBN 978-3-9827180-3-3

Print hardcover edition

ISBN 978-3-9827180-4-0

Print hardcover limited edition

Exclusion of liability

The authors and publisher have taken great care in pre-

paring this book, but they make no express or implied

warranties regarding its content. They assume no respon-

sibility for errors, omissions, or any incidental or conse-

quential damages arising from the use of the information

or programs contained herein.

The techniques, ideas, and recommendations in this

book, including any associated code, are provided

in good faith based on the authors' expertise and

experiences. However, technology and individual

circumstances vary, and the applicability of the pro-

vided solutions should be carefully assessed.

Readers are encouraged to use their own judgment

and discretion when applying the concepts presented.

While every e�ort has been made to ensure accuracy,

the authors do not guarantee the e�ectiveness or suit-

ability of these approaches for all scenarios.

The authors disclaim any liability for unintended conse-

quences, errors, or omissions that may result from applying

the book’s content. By using the information in this book,

readers acknowledge and accept this disclaimer, recog-

nizing the importance of individual responsibility in its

application.

45 | 46

02
the world of data
It's no surprise that ‘data’ sits at the heart of data solutions, particularly within Data Warehouse ecosystems.

Data shapes the fundamental capabilities that a data solution must deliver.

To truly understand this, let’s take a closer look at what data actually is and how it behaves

within our systems and processes.

Fundamental assumptions when dealing with data

When working with data, it is often helpful to make
assume that —at least for the purposes of designing a
data solution— any initial requirement may be ‘wrong.’
Instead, business requirements and questions are
better viewed as starting points for a deeper process
of data discovery, clari±cation, and understanding
in collaboration with subject matter experts.

This cautious approach applies not only to require-
ments but also to the data itself, which should be
approached as potentially unreliable.

In short, when interpreting data, we assume that the
questions that we’re asked may be wrong, the data we
have available may be unreliable, and the operational
systems that captured data are inherently imperfect.

We believe that a data solution that is designed to
solely to meet an upfront requirement is unlikely to
achieve the intended business outcome.

This may sound somewhat negative, but it simply re-
²ects a commitment to building ²exibility in the data
solution, so that we can adapt when the results don’t
align with expectations.

This ²exibility enables gradual testing, learning from
the available data, improving data quality, and build-
ing a knowledge base together with subject matter
experts.

We assume that individuals work to the best of their
abilities, and with the right intentions, but that no
single person has a ‘full picture’ of the complete
history of systems, processes, and workarounds
across the entire organization.

Over time, organizations may accumulate consider-

able ‘technical debt’ from implementing workarounds
that were never fully corrected. Sometimes, the origi-
nal reasons for these ±xes may even be lost entirely.
These past decisions are still re²ected in data, and
are often considered ‘data quality’ issues.

Data teams often have limited control over the opera-

tional systems, and may not be fully across the history
and evolution of these systems and their data. Fixes to
data which have been applied in the past may not have
been recorded, or changes were allowed through back-
end access or APIs that should not have been allowed.

Sometimes, all that remains is the trace left in the
data itself, and it’s up to us to make sense of it.

Given this complexity, we consider it a best practice
to design for repeatability in data clari±cation until
a shared understanding is reached. And, as in scien-

ti±c ±elds, this understanding may evolve as new
evidence or perspectives emerge.

However, and this is a key guiding principle, the data itself —the events that happened and were recorded
in the data solution— remains immutable. The data will never change. It is just our perception
and understanding of them that shifts.

By embracing this, we can design data solutions that support ongoing data clari±cation,
continuous learning, and an adaptive approach to data management.

A machine designed for change

The data solution de±ned in this book is fundamental-
ly different from what traditional data solutions were
perceived to be.

Because of the nature of data and the need to progres-

sively understand it, we can’t de±ne the data solution
by its reporting, Data Warehouse, Business Intelli-

gence, or Advanced Analytics requirements alone.
Rather, to be successful, the data solution needs to
be able to adjust constantly to facilitate continuous
clari±cation of these requirements.

For example, take the ±rst iteration of a given report-
ing requirement. As per our fundamental principles,
we will assume that both the question itself as well as
the data we have to answer it are not ±t for purpose.
Of course, we do our best to assist the consumer in
question, but always keep the possibility open that
adjustments will be required.

The solution may deliver an initial data set based on
what is available in the various relevant operational
systems, but without any interpretation applied. When
this initial report is presented to a subject matter ex-

pert, he or she is likely to respond with feedback that
highlights issues and proposals for adjustments with
some sort of business rule.

Thank you for your requirement!

This feedback then can be incorporated into a sub-

sequent version — as a new interpretation on the
raw data.

And so the process continues.

The dynamics of data are so varied that, without this
continuous feedback loop, it will remain unclear if a
given ±nding may simply be a data quality issue,
or a genuine insight. The ability to reprocess the
original data —the immutable events— with different

interpretations, or lenses, is a key capability
that we believe the data solution must have.

This can be achieved by separating the data
ingestion from its interpretation.

This is an aspect of separating concerns,
something that will be covered in-depth later.

Reprocessing of data when new understanding be-

comes available —supported by code-generation and
automation— is a powerful way to assist organizations
in their journey of improving their knowledge of the
data and the involved business processes.

But, it is not only the capability for reprocessing of
data when new clari±cations emerge that is essential.
Systems and infrastructure often change over time as
well, both for the data solution itself and for the orga-

nization as a whole.

A successful data solution is adaptable at a technical
level as well. New technologies and concepts become
available all the time — the only constant is change.
These may change the way data can be managed.
It pays off to be adaptable and scalable to be able to
make the most of these opportunities when they arise.

For example, being able to scale out to different tech-
nical architectures for the components where this
makes sense. Or switching out loading technologies
(i.e., Extract-Transform-Load, or ETL, platforms)
for different approaches.

In these cases, it is just the technology that may
change. As we will see in this book — the design,
concepts and metadata will remain.

Lastly, the organization itself is not static either. Many
organizations are continuously evolving, conquering
new markets, introducing new products and business
models — divesting or sun-setting other parts of the

21 | 22

Data Modeling

& Design

Data Storage

& Operations

Data Security

Data Integration

& Interoperability

Data

Architecture

Data
Governance

Reference &

Master Data

Data Warehousing

& Business

Intelligence

Metadata

Data Quality

Document

& Content

Management

business. This too has an effect on
the data that is available, and the way
it is used.

In a way, an organization can be seen
as an organism that is continuously
adapting, and a data solution should
try to match the pace and agility of
these changes as much as possible.
This means that the intent, direction,
goals and delivery of the solution may
change often, and fast.

The closer the data solution can stay
to this ever-moving goalpost, the more
successful it is likely to be.

Many products, regardless if they are
consumer goods or software products,
are designed for a speci±c purpose and
created exactly as per the design. If you
design a dining table, the speci±cations
are usually very clearly de±ned. You
would expect the ±nished product to
be exactly as was intended — the dining
table may be returned to the store if not!

Designing a data solution following the
practices explained in this book is done
with a very different mindset. The data
solution is not designed for a speci±c
deliverable, it is a machine that is design-

ed for change.

The role of a data solution

The previous sections highlighted many
of the challenges in working with data
and emphasized that data interpreta-

tion is often a gradu-al, iterative process,
typically undertaken with subject mat-
ter experts. With each iteration, our
understanding of what the data means
and how it behaves becomes clearer.

When these understandings are estab-
lished, there’s a natural tendency to
solidify them in the data solution as
‘business logic,’ using calculations or

code to apply speci±c transformations. However, it can be helpful to
consider how much of this complexity the data solution should absorb.

What issues can, and should, the data solution address? Where
should architectural decisions be made to make data ±t for its in-
tended purpose? To what extent must the data solution implement
complexities to address shortcomings in the system landscape?

These can be important considerations, but they are often in²uenced by
speci±c contexts and personal preferences. Regardless, decisions must
be made with a full understanding of their potential rami±cations.

The Data Management Association (DAMA) offers helpful guidance
here through its Data Management Body of Knowledge (DMBoK).

This reference provides various de±nitions and context around
common terms related to ‘data.’ From the perspective of the data
solution, it is often good to remember the context we work in, and
what the relationships and roles are to related areas of expertise.

Inspired by the ‘DAMA Wheel,’ the illustration below
shows these areas:

Here, the implementation of the data solution falls under the data
governance umbrella as part of ‘Data Warehousing and Business
Intelligence.’ This can be a sobering realization for many profession-
als involved in these disciplines, but it is also a very helpful one:
not every data problem need to be solved by the data solution.

Consider, for example, the varying de±nitions of a ‘customer,’ ‘policy,’
or ‘premium’ in different parts of a business. Such disparities can be
challenging for traditional Data Warehouse solutions, especially if
the goal is to deliver a single version of the truth.

T H E W O R L D O F D ATA

This objective often requires extensive upfront align-

ment on interpretations. These outcomes are subse-

quently cemented into the information model, and
data must be mapped or transformed to this de±ni-
tion — a heavy and onerous upfront design
and development effort.

When interpretations change or disagreement occurs
at a later stage, the efforts to accommodate these
changes can be signi±cant.

An alternative approach is to acknowledge that
different business areas may have different require-

ments, and that it may not be immediately needed to
align or agree on interpretation. It might be better to
‘agree to disagree’ initially. As long as the data solution
accurately represents the facts —the raw events as they
occurred— interpretations can be adjusted iteratively
over time.

Often, shared de±nitions for common business
entities emerge only after prolonged exploration,
and a process of ‘guided democracy’ where senior
leadership, perhaps even a Chief Data Of±cer,
strives to align all stakeholders.

Rather than placing the burden on the data solution to
±nd a common solution, it should be able to accom-

modate and even report on competing interpretations,
providing a basis for further discussion rather than
forcing a single interpretation upfront. This way, the
burden of ±nding a common de±nition shifts from the
data solution to the data governance process.

It may be possible that there are even multiple de±ni-
tions of information that are considered ‘core’ such
as revenue or customer. This can be an eye-opener
to: how is it possible that there are so many different
views on revenue?

When agreement is reached, the updated interpre-

tation can be reported back to the data solution and
addressed in future iterations.

Thank you, again, for your business requirement.

One key advantage of this approach is that it both
increases the speed to value, as well as engagement
of the stakeholders. The approach can be made
fully transparent.

While the goal of achieving a single version of the
truth is noble and should remain part of the long-term
strategy, it may not be the responsibility of the data
solution to deliver this. Instead, it is better suited as
an objective for a comprehensive data governance
program.

This is why a fundamental design decision is that the
data solution is not designed to be the source of truth.
Rather, it is designed to be the source of facts as they
occurred, without any speci±c interpretation.

Throughout this book, we refer to this as the
single version of the facts.

Data represents the events created by systems when
certain processes occur. It is the core purpose of the
data solution to record this correctly, timely, and
completely.

Resolving differences in interpretation, however,
is ultimately a task for data governance.

Solutions for ongoing data interpretation

A data solution, such as a Data Warehouse,
can be considered to be a necessary evil.

In an ideal world, there would be no need for it. Ideally,
optimal data governance and near real-time multi-di-
rectional data harmonization would have created an
environment where it is easy to consume data across
systems without any ambiguity. The same applies to
business logic — if everything is neatly organized in an
all-encompassing data architecture, how many trans-

formation rules would still be required?

This ideal scenario remains beyond reach for most
organizations and, more broadly, for the data industry
as a whole.

However, treating data solutions as mechanisms to
facilitate communication can help move an organiza-

tion closer to this ideal. Achieving this is yet another
reason that a data solution needs to be ²exible, quick
to adapt, and easy to manage.

Herein lies a paradox, which will be a recurring theme.

23 | 24

To make a data solution suf±ciently ²exible, easy to manage, and
able to adjust at the speed the business operates, the solution re-

quires multiple well-de±ned layers, areas of design, and frameworks.

At ±rst glance this may appear to be a complex con±guration.

A paradox of complexity

The ²exibility required for a data solution often introduces complexity,
typically manifesting as distinct ‘layers’ and ‘frameworks’ within the
solution design, each focused on implementing speci±c concepts.

A common question that arises is whether it’s worth investing time and effort
upfront in what might appear to be a complex system involving various layers
and concepts.

Wouldn’t it be simpler to just query the raw data directly, without the hassle of
managing multiple data management and interpretation layers? How can we
strike the right balance between necessary complexity and desired functionality?

It is our opinion that a necessary baseline of functionality needs to be in place
to ensure ef±cient and effective management of a data solution — including the
refactoring necessary to adapt to changing data interpretation.

We will refer frequently to the term ‘refactoring.’ In this context, refactoring
involves redesigning parts of the solution to optimize it for a given scenario.
It’s a concept borrowed from software development, where it typically refers
to improving existing code without necessarily adding new features.

Refactoring may not always yield visible changes to the end user, but it often
results in code that is more ²exible, maintainable, and robust. We believe that
refactoring is a ±tting term for the restructuring of the data solution, aimed
at delivering the intended optimization outcomes.

Our goal is to de±ne and standardize this necessary complexity upfront, so that it
becomes a natural part of the solution rather than a barrier to implementation.

This foundational baseline, with its well-de±ned layers, design areas, and suppor-

ting frameworks, is critical for making the data solution easy to operate and main-

tain. It facilitates refactoring —even automated— and supports quick adaptation.

While these concepts may add complexity, they can be standardized and integrat-

ed into automated code generation and delivery. By establishing this baseline,
we believe that data solutions can become a machine designed for change,
capable of evolving alongside business needs.

We will explain our approach using the concept of separating concerns,
the mindset of data solution virtualization, and the implementation
framework of Engine Thinking.

Together, these three concepts form the speci±cation
of the data solution we propose.

T H E W O R L D O F D ATA

Separation of concerns

A key concept to ensure that the inherent complexity
of data solutions can be managed in a simple way is
the separation of concerns. Separating concerns means
breaking down the tasks that a data solution must
perform into smaller, modular, and atomic processes,
each with a de±ned role within the overall data and
IT architecture.

This approach stands in stark contrast to traditional
methods, which often feature complex, monolithic data
logistics processes. These processes typically perform
numerous functional steps in a single operation.

For example, typical two-layered solution designs
approaches (e.g., dimensional models or Kimball-style
Data Warehousing) load data into a staging area (layer
1) that resembles the target model (layer 2). Data is
then merged with the already existing information.

The data logistic processes that execute this logic
have to support a broad variety of functions,
including but not limited to:  �Implementing a variety of business rules  �Integrating multiple data sources  �Managing changes over time  �Key distribution  �De±ning structure and hierarchies  �Balancing performance requirements  �Handling granularity and aggregation  �Detecting data changes

This may result in solutions that can be dif±cult to
extend, and tend to suffer from increasingly complex
interdependencies. The resulting effort to implement
changes pushes out delivery time, and creates a gap
between the required functionality of the solution
and the degree that these requirements have been
implemented.

This can lead to critical issues and the emergence of
alternative solutions that may eventually render the
data solution obsolete, especially as requirements
evolve over time and become harder to keep pace with.

The larger the system grows, the wider this gap
tends to become.

‘Hybrid4’ modeling approaches, which combine
elements of normalized and dimensional modeling,
tackle these challenges by separating the fundamental
housekeeping of data solutions from business logic,
maximizing ²exibility and ease of maintenance.

Unlike more traditional forms of dimensional model-
ing, where a single process often handles multiple
functions, hybrid modeling techniques decompose
these tasks into distinct, atomic operations.

For instance, key distribution is managed by core busi-
ness concept entities representing the central busi-
ness keys, and historization is embedded in context
entities. Additionally, relationships between business
concepts are modeled separately using natural busi-
ness relationship entities.

Business rules —or the interpretation of data— are
layered on top of the raw data, but only after it has
been safely recorded — rather than applied when the
data is loaded into the data solution. This approach
preserves the integrity of the original data while
enabling ²exible interpretation.

Requirements inevitably change over time, especially
during the early phases of data projects and more
generally as business needs evolve. By separating the
delivery of information (via business rules) from the
storage and management of raw data, hybrid modeling
techniques —supported by a matching solution ar-

chitecture— make it easier to accommodate different
perspectives and reduce the complex interdependen-

cies often seen in traditional approaches.

Hybrid modeling techniques acknowledge that the
‘truth’ is subjective and may differ across consumers of
data, even within the same organization. While there
may not be a single version of the truth, there is always
a single version of the facts — the immutable transac-

tions that serve as a reliable foundation for delivering
multiple interpretations.

This approach forms a core part of our methodology,
and we will explore it in detail throughout the follow-
ing chapters.

25 | 26

Data solution virtualization

In the data modeling community, discussions often focus on speci±c,
technical topics closely tied to the physical implementation of data
solutions.

For instance, in Data Vault methodology, questions like ‘Do we still
need Hubs?,’ ‘Should we create separate tables for each attribute?,’
or ‘Is this transaction better modeled as a Hub or a Link?’ tend to
center around physical implementation details.

While these are interesting considerations, it can be much more
valuable to separate the principles and concepts from their techni-

cal implementation choices — and use these to agree on how to
best create value for a business using data.

Physical data modeling concepts and methodologies are subject to
evolution themselves, it’s not just the business, models, and tech-

nology that evolves. Newer, sometimes better, ideas emerge regu-

larly, and it is essential to periodically reassess and adapt existing
approaches. It’s also perfectly acceptable to experience a form of
atavism —where certain practices resurface after a period of
absence— if they provide a good solution for today’s problems.

How do we keep the things that work in the current environments,
and move away from what doesn’t make as much sense anymore?

Inevitably, there will be some tension between adhering to pre-

scribed standards and this evolutionary mindset. Rigidly following
an implementation standard may lead to dead ends. Some ideas
lose relevance, don’t work as well using certain technology, or prove
less effective than anticipated. Methodologies must evolve to remain
practical; otherwise, they risk becoming obsolete — along with any
solution that strictly follows them. However, by adopting a mindset of
continuous improvement, where designs are iteratively adjusted, the
likelihood of long-term success and relevance increases signi±cantly.

This is where the concept of data solution virtualization

comes into play.

Data solution virtualization is a mindset where changes in data
models, concepts, patterns, and business logic are directly and auto-

matically translated into the implementation and deployment of the
data solution. It’s refactoring taken to the extreme: when you update
your model or design, the data solution adjusts itself automatically.

The virtualization aspect alludes to the idea that —given suf±cient
resources— any interpretation of data can be generated at runtime.
In essence, the entire data solution could be ephemeral, recreated as
needed. However, in the real world, resource constraints mean that
the actual implementation may vary. This could involve recreating
views, dropping and rebuilding database tables, or regenerating

and executing the data logistics pro-

cesses needed to repopulate tables
with up-to-date data.

Regardless of the speci±c implementa-

tion, the outcome remains the same.
Even if development and deployment
follow a controlled, gated approach 

—which is often the case— this method
allows for previewing a design before
formally committing to it. It enables
direct examination of the data outputs
resulting from data modeling and inter-

pretation logic, without needing to fully
develop the entire solution ±rst.

This can be particularly helpful during the
early stages of development, where there
typically is more volatility in the design.

A paradox
At ±rst glance, data solution virtual-
ization may give the impression that a
physical data solution is unnecessary,
which presents another paradox. If you
can represent your target data model as
a set of views and automatically allocate
infrastructure resources for optimal
runtime performance, does it still make
sense to implement the solution using
physical tables and corresponding data
logistics processes?

The answer, in most cases, is still yes 

— at least for now. This is due to various
factors, such as the available technical
infrastructure, software capabilities,
performance considerations, and the
size of data sets.

However, the purpose of data solution
virtualization is not necessarily to ren-

der traditional data logistics obsolete.
Instead, it serves as a litmus test to ver-

ify that all the necessary capabilities
of the data solution are in place, and
properly con±gured.

T H E W O R L D O F D ATA

A useful way to think about this is: if you can generate and deploy
your entire data solution using queries or views based on metadata,
then you can also use the same metadata to deploy the solution with
physical tables and data logistics processes.

A core concept here is the ability to process data deterministically.
Deterministic processes always produce the same outcome when
given the same input values. In databases, deterministic queries con-

sistently yield the same results when run against the same data set.

When your data solution is guaranteed to be deterministic, it pro-

vides ²exibility in choosing how the results are delivered. In essence,
when processes are deterministic, data solution virtualization treats
the main functionality of the data solution as a commodity that can
be deployed into a speci±c physical design and supporting data
logistics. The physical implementation becomes a parameter.

Returning to the vision of data solution virtualization, what seems
realistic is that many functions of the data solution will increasingly
move into the background. The exact speci±cations of the physical
model become less relevant, as these are driven (and automatically
refactored) by de±ned optimization rules. For example, automated
refactoring might eliminate the need for manual decisions about
splitting Satellites due to high change rates in a few attributes.
The engine might decide to create multiple physical tables for
a single context of a business key —or not— depending on
the data dynamics at the time.

Instead, the focus can shift towards the information model,
including the de±nition and interpretation of data entities,
with everything else derived automatically.

Data solution virtualization, as a test of fundamental capabilities,
demonstrates that the data solution can evolve alongside the business,
continuously bridging the gap between raw data and its consumption.
The exact requirements for achieving this make up the core of the
engine, which will be detailed in the s Engine Thinking  section.

Engine Thinking

To implement the vision of data solution virtualization, and fully em-

brace ²exibility through automation, we can integrate the necessary
components for delivering a reliable and adaptive data solution into
a cohesive system capable of operating autonomously.

This capability —to treat the data solution as a dynamic communi-
cation asset while maintaining principles like layered design and

separation of concerns— is what we
refer to as Engine Thinking.

The engine concept acknowledges that
many technical implementations share
a common foundation in terms of their
information (e.g., conceptual and logi-
cal) models and essential components.
The resulting physical data model and
data logistics processes can be viewed
as by-products — outcomes driven by
the optimization needs of the solution.

Consider the analogy of a database
optimizer, which uses statistics and
parameters to determine the most ef±-

cient way to execute a query. The engine
operates in a similar manner, but at the
application level. It continuously re±nes
the physical model based on usage pat-
terns and performance considerations,
optimizing the implementation auto-
matically in the background.

Imagine the utility of embedding these
optimization decisions as parameters,
letting the engine drive the creation of
the most suitable physical structures.
Or even better, allowing an intelligent op-

timizer to decide the optimal approach.
If we elevate the data models (and cor-

responding design choices) to a higher,
abstract level, many low-level physical
model implementation decisions can be
streamlined, or even eliminated.

Do we really need to worry about how
relationships are modeled physically
when we agree on their existence at
a conceptual level? Is it necessary to
physically instantiate key tables if they
are rarely used in queries? Could we
generate them only on demand?

Does it matter to the information model
if certain columns are moved into sepa-

rate objects for performance reasons?

27 | 28

Optimizer

Information Model

Design Patterns

Business Logic Testing

Notification
Deployment
Automation

Refactoring

Data Logistics
Process Control

Version Control
Code Generation

Templates

Design Metadata Persistent Staging

Should relationships always be represented as unique instances
(e.g., core business concepts or key tables), or can they be man-
aged as many-to-many tables? Should we select a speci±c hashing
approach across all tables, or can we balance out necessity and
performance versus risk appetite for collisions in the algorithm?

These questions, and many others like them, can be addressed
through the engine concept. The key lies in connecting the compo-

nents required to build the data solution effectively from the outset.

The engine combines a suite of related capabilities that facilitate
a ²exible approach to designing and managing data solutions.
The diagram below outlines the core components of the engine.
Each concept is explored in-depth in subsequent chapters.

The engine is governed by a combination of design metadata and
environmental metadata that decides and manages how the physical
models and corresponding data logistics processes are generated,
deployed, and maintained.

The core premise of Engine Thinking is to establish a mechanism
that enables (re)modeling of data, while the technical solution is
automatically refactored in the background to accommodate new
or revised designs. Technically, this includes capabilities like auto-

matically rede±ning physical tables and reloading them with data
using dynamically generated data logistics processes — and more.

Now, let’s begin constructing our own engine by diving deeper into
these concepts and aligning them with the right technologies and
frameworks.

Design patterns

The foundation of any code generation
or automation efforts is a clear under-
standing of what needs to be accom-
plished. Design patterns offer a struc-

tured framework for documenting the
core concepts of the solution, including
data logistics processes.

They serve as a ‘what’ and ‘how-to’
guide, detailing these concepts while
remaining technology agnostic — inde-

pendent of any speci±c implementation.
Design patterns are explored in depth in
the  data solution architecture sections.

For now, it’s important to emphasize
that any key decision made by the en-

gine should be grounded in a well-docu-

mented design pattern. Code generation
templates, in turn, act as the practical
implementations of these design pat-
terns, translating the documented
concept into executable artifacts.

Design metadata

Design metadata is software and plat-
form agnostic, and focuses on conven-

tions and source-to-target mappings
— including data de±nitions and trans-

formation rules.

An example of design metadata is the
de±nition of the core business concepts
and their relationships (a convention),
or a transformation to conform a specif-

ic data set to a de±ned target (a lineage,
business rule, or source-to-target
mapping).

This type of metadata is closely tied to
the concept of design patterns. These
essentially guide the delivery of the
data solution by using design meta-

data as input.

T H E W O R L D O F D ATA

Design metadata de±nes how many data logistics processes are expected, captures how data
is transformed, and determines what data needs to go where. In the  code generation chapter,
we will introduce a standard format to record design metadata.

Design metadata encompasses all metadata necessary for deploying a solution, including:  ��Process and data logistics details, recorded as ‘mappings’ or lineage information
capturing where data is moved to — or interpreted from  ��Storage metadata, describing objects such as tables, views, formats, domains.
These can either be derived using conventions, or speci±ed directly

Managing design metadata is the cornerstone of the engine, particularly de±ning the source
and target models (structure metadata) and establishing source-to-target mappings (process
or data logistics metadata).

Each organization has its own systems and processes, and mapping these to a data model is
always tailored and speci±c. This is why design metadata is the true intellectual property (IP)
of the data solution. It encapsulates the unique and custom interpretations of data speci±c
to an organization.

When combined with code generation templates and guided by design patterns, design metadata
drives the automated creation of data logistics processes. Design metadata de±nes the what,
while the code generation templates provide the how. Together, they form the essential com-

ponents that fuel the engine.

At this stage of the engine, a standardized framework for recording design metadata is in place.
This repository will serve as a foundation, gradually enriched as additional components
of the design are ±nalized — particularly the de±nition of the information model.

As the design evolves, the metadata will capture and re²ect these developments.

Persistent staging

A persistent staging area (PSA) forms the backbone of a ²exible data solution. It acts as an immutable archive,
capturing all original transactions that have been presented to the data solution before any transformation
or interpretation is applied, including data modeling.

Often referred to by other names like ‘history zone,’ the PSA can be broadly de±ned as an insert-only, time-
stamped log of all transactions (events) received by the data solution and organized by arrival time. The PSA

can be implemented using databases, tables, logs, streams, ±les, or a combination of these technologies.

Because the transactions stored in the PSA are original and immutable, the PSA enables deterministic
(re)processing of data. Reprocessing simply means running the input data through updated logic,
recalculating the output. This capability is essential for replaying historical transactions against
an revised target data model or modi±ed transformation rules.

The main purpose of the PSA is to store raw, unaltered transactions for potential reprocessing
when design metadata changes. This includes changes to the target model itself, which may
evolve as details are re±ned and reconsidered.

29 | 30

This aligns with the iterative approach of
clarifying data meaning over time. Even
with the best intent and skills, initial mod-

els may not fully capture all nuances,
and are therefore subject to change.

The PSA provides a reliable foundation
for reconsidering raw transactions from
different perspectives. It allows an or-

ganization to solve the inherent overall
complexity of its business incrementally.

An application-readable log
A helpful way to think about a PSA is

as an event-based system — an applica-
tion-readable ‘log’ that is similar to a
transaction log in a relational database5.

In database systems, a transaction log is
an insert-only, time-ordered sequence
of data events (inserts, updates, deletes).
It is central to how databases work. Data
events are ±rst written to the transac-

tion log and then propagated to (poten-

tially) various data structures such as
tables or indexes, which serve as repre-

sentations of these events. Events can
even be forwarded to other systems
through techniques like log shipping
or transaction log-based replication.

For a database, the log is the ultimate
source of truth — the main record of all
changes. It is also essential for imple-

menting the ACID6 principles. In a

mature system, this is handled almost
autonomously in the background 

— but it remains a fundamental
mechanism for ensuring data
consistency and reliability.

Pub/Sub
A PSA operates as a ‘Write Once, Read
Many’ (WORM) system, where multiple
data logistics processes can indepen-
dently ‘read’ from the log. Each con-

sumer can track its own processing
state using pointers like inscription

timestamps, which indicate the time of the event’s arrival
in the PSA. This way, consuming data ²ows, selections or
streams manage their own load window and can therefore
operate completely independently.

The PSA does not need to ‘know’ which processes use the log,
or how up to date they are in their processing.

This independence aligns with the principles of the publish-

subscribe (pub/sub) pattern, where producers (data sources)
and consumers (data processes) operate independently
without direct knowledge of each other.

This approach even makes it possible to support applications that
only require to be online from time to time, and allow them to sync
their data when required. Applications control the way they con-

sume data. It is only necessary to track the event up to which
processing is completed.

For the data logistics processes of the data solution, this works the
same way. Essentially, every data logistics process can be independent
and maintain their own state and consistency. In a sense, they are all
individual consumers of the application-readable log. This supports
an almost endless degree of parallelism and ²exibility in data pro-

cessing, something that will be explored throughout this book.

Implementing the PSA
A PSA can be implemented using a wide range of technologies. Re-

gardless of using database tables, ±les, or streams, the core concept
remains the same: an insert-only, time-stamped sequence of events.

In databases, this may involve physical tables, while other imple-

mentations might use formats like Parquet, Avro, Iceberg, JSON,
or HDFS.

Contemporary technologies support this concept, including bridging
solutions like PolyBase and distributed commit log systems such as
Apache Kafka, Azure Event Hub, Amazon Kinesis, and Google Pub/
Sub. These are just some of the technologies available at the time
this book was written. In the future, different tools and techniques
are likely to be available. However, the concept is expected to remain
the same.

These tools offer scalability, high throughput, fault tolerance, and
features like log retention and partitioning. They allow consuming
applications to subscribe via APIs or services. This way, the PSA

effectively becomes a ‘stream’ with potentially in±nite retention
(Time to Live, TTL) — an institutional memory.

T H E W O R L D O F D ATA

We have explored the role of the PSA within the context of a data solution,
where it acts as a central repository capturing transactions from various
operational systems. However, the possibilities of the PSA extend beyond
just supporting the data solution.

Besides supporting the myriad of automatically generated atomic data logistics
processes that consume data from the PSA into the data solution, the PSA can
also serve as a subscription source for any information-consuming system.

This positions the PSA as a central ‘data hub’ that provides the infrastructure to
provide raw data change events to any other system that requires it — often an early
win in data projects. Downstream processes can consume events independently
and at their own pace, and as supported by the available technology.

Information model

The information model serves as the brain of the data
solution, shaping how data ²ows through the system,
and ultimately unambiguously describing what the
data represents.

At this stage of the engine, design patterns detail how
concepts need to be managed, an approach for captur-
ing design metadata is available to start documenting
what objects exist and what data needs to be mapped
to them, and the PSA has begun recording transac-

tions from the connected operational systems.

However, it has not yet been determined how all of
this should be applied. This is the role of the model.
It is the model that de±nes what the data should look
like at every stage of the solution.

Levels of abstraction
There is a distinction to make between different levels
of modeling abstraction. Without going into too much
detail, these can be classi±ed as more conceptual,
more logical, or more physical.

Conceptual models focus on high-level represen-

tations of terms and concepts, their de±nition, and
their interactions. A logical level is more focused on
clearly-speci±ed entities, their types, attributes, and
relationships. The physical model covers the techni-
cal implementation tailored to a speci±c database
or technology.

The relationships between these different levels of
abstraction can be recorded in design metadata 

— for example as a mapping between a logical model
entity and a physical model table. These mappings can
then be used to generate physical model structures
using code generation templates. The physical model
is often convention-based and can be derived from its
more abstract logical version.

In the context of the engine, this distinction is impor-
tant. We often experience discussions that focus on
differences of opinion at the physical level (e.g., table
structures, speci±c columns), when there is suf±cient
agreement at the logical level.

Using the engine, the focus is placed more on the logi-
cal level and above — the physical level can be automat-

ically generated, and is subject to improvements as
determined by the  optimizer and its directives.

We will predominantly use the term ‘information mod-

el’ (or simply ‘model’), particularly when contrasting
certain design decisions with the physical model. We’ll
leave the exact level of abstraction intentionally ²exible,
as this is subject to different opinions and does not
materially affect how the engine operates.

Developers can choose to work directly with physical
models, apply these to design metadata, and generate
the solution accordingly. Alternatively, they can de-

±ne a more abstract, business driven representation 
—what we refer to as the information model— and use
conventions to derive a physical version.

31 | 32

Mapping data to the model
An important piece of design metadata to capture is the relation-

ship between data sources and model objects. What data needs to
go where? This relationship often becomes apparent during the
data modeling efforts, but can also be added later. This key piece
of information is required to generate the data logistics processes
that populate the model.

When the model is complete, it effectively has become part of the
design metadata. In other words, the design metadata contains
a representation of the model.

When the model changes, these changes must be re²ected in the
design metadata as well, so that the solution can be automatically
adjusted to re²ect this updated de±nition of data.

Code generation templates

Code generation automates the production of data solution
components.

To generate the necessary code, both code generation templates
and design metadata are required as inputs. Together, these inputs
can be compiled into executable data logistics processes or object
artifacts tailored to a speci±c platform or environment.

A design pattern de±nes the goals and outcomes for a concept or
component, and the code generation template speci±es the corre-

sponding technical implementation. Templates are typically de-

scribed using a Domain Speci±c Language, making them interpretable
by a compiler or runtime engine.

The outputs of this process can include programming code, SQL
scripts, or proprietary objects for various data technologies. They
cover all aspects of the data solution, including data objects (tables,
views, ±les), data logistics processes, scripts, and even infrastructure
and connectivity.

We refer to this as model-driven code generation. The model,
as encapsulated in the design metadata, drives the output
based on the selected code generation templates.

The challenges of manual development
Historically, developing data logistics processes has been a manual
and resource-intensive task. This made it one of the most time-con-

suming aspects of data solution development. The overhead caused
by manual (re)development, maintenance, and testing of the many
involved data logistics processes has traditionally been a major
barrier for refactoring.

Pattern-based approaches, combined
with code generation, can mitigate
many of these issues.

Manual development also often imposed
restrictions on developing truly scalable
data solutions. For instance, in model-
ing techniques such as Data Vault or
Anchor Modeling, each data set associ-

ated with a context table and its corre-

sponding core business concept table
typically requires its own independent
data logistics process. These processes,
while following the same pattern, are
unique and may number in the hun-

dreds or thousands.

With manual development, the trade-off
between creating potentially hundreds
of seemingly redundant data logistics
processes for long term scalability and
short term delivery would usually favor
the latter. However, code generation
shifts this paradigm. By automating the
production of these repetitive processes,
code generation enables the scalability
and high degree of parallelism in data
processing that manual approaches
struggle to achieve.

Following evolution
De±ning a collection of well-structured
design patterns and code generation
templates to deliver the data solution
is essential for achieving ²exibility in
delivery. Patterns and templates evolve
over time, and this can sometimes lead
to a desire to refactoring part, or even
the entire data solution.

Investing in code generation supports
a continuous evolution of the data solu-

tion. It allows you to easily incorporate
and test new ideas and improvements.

T H E W O R L D O F D ATA

This reduces the time to value because the output data logistics processes can be delivered
faster, and more consistently. Code generation also helps to dramatically reduce technical
debt when tweaks to the patterns are applied, since updates can automatically propagate
throughout the solution.

It is a best practice to ensure the entire solution can be generated to effectively combat
the inevitable accumulation of technical debt.

Lastly, one of the most important bene±ts is the consistency in delivery both in terms
of time and quality. In our experience, businesses value consistent quality and reliable
delivery timelines over speed with variability (though speed is still important).

By automating the generation of data logistics processes, teams can ensure predictable
results while maintaining ²exibility and short delivery timelines.

Data logistics process control

A data logistics process control framework (or simply,
‘control framework’) is a structured set of procedures
designed to govern the execution, orchestration, mon-
itoring, and logging of individual data processing
and integration tasks.

A robust control framework is an essential require-
ment of any data solution, and intends to:  �Orchestrate data logistics process executions  �Provide logging and audit capabilities  �Simplify the management of the data solution  ��Enforce application-level transaction control

(based on ACID principles)  �Enable recovery and restart in the event of failures

This section outlines the core requirements
of a control framework. Further implementation
details are covered in the  data logistics control
framework section.

Orchestration of process execution
In some scenarios, it may be necessary to de±ne de-

pendencies between processes. Some processes have
to run before others. While the approach outlined in
this book aims to minimize dependencies where pos-

sible, you may ±nd cases where dependencies between
data logistics processes are still required. This may be
due to interface wait-states (e.g., waiting for call-re-

sponse), performance reasons, interdependent business
rules, or speci±c pattern design (e.g., key lookups).

For example, a separate delta-detection process might
be required to capture data changes in a staging area
before subsequent transformations can proceed.

Beyond managing execution order, orchestration and
understanding dependencies can also be used to de-

tect and prevent issues such as race conditions, cache
staleness, and referential integrity violations.

A good example is populating core business concept
(key) tables in a parallel environment. Potentially many
data integration processes can insert new keys in these
central tables, but if two or more processes attempt to
insert the same key at the same time a constraint vio-

lation may occur. A smart control framework can tem-
porarily suspend con²icting processes such as these.

Logging and audit capabilities
Regardless of whether the solution delivers data via
views, functions, scripts or materialized objects (e.g.,
tables, indexed views, ±les), the control framework
must record all activity for transparency and
accountability.

The control framework tracks every unique process
execution in a log or repository, and issues a unique
execution instance identi±er. The data, processed via
a data logistics process execution, will be stored with
this unique identi±er so that it is always traceable
which data was handled by which process, and when.

This attribute is called the Audit Trail Id.

33 | 34

Using the Audit Trail Id, all materialized
data is ‘tagged’ with a pointer corre-

sponding to the unique process execu-

tion that inserted or modi±ed the records.

For example, if a data logistics process
inserts 100 records into a target table,
the control framework logs the start
and end times of this unique process
execution, records the number of rows
processed, and assigns a unique Audit
Trail Id to those 100 records. As a result,
the 100 records that have been inserted
will all have the same Audit Trail Id.

In virtualized environments, the control
framework logs view and function exe-

cutions, recording the user who issued
the query and the exact version of the
object accessed. This enables precise
auditing and tracking of all interactions
with the data solution.

Application-level transaction control
This ‘link’ between the control frame-

work and the data will also become
important in preparing the data for
downstream processing, including
delivering data for consumption.

At various stages, it will be necessary
to assert which data is consistent and
available for next steps. Since the cont-
rol framework ‘knows’ what data is still
being processed and what data is ready
for further use, it supports the imple-

mentation of transaction control at the
‘application level.’

This is similar to the ACID principles as
mentioned in the previous PSA section.
ACID encompasses a set of properties of
database transactions intended to guar-
antee validity in events such as errors,
outages and power failures. The control
framework is used to apply similar con-

cepts across the data solution.

This can be used to prevent ‘dirty reads’ from the solution, and to
implement associated locking strategies for data integration. Dirty
reads occur when data can be accessed that has not been fully com-

mitted by the solution — when data logistics processes have not yet
completed successfully.

Another use case is the ability to report on data latency, providing
insights on data freshness — an important metric for managing
data solutions.

Simplifying data solution management
Ideally, a process control framework is designed to be idempotent.
In this context this means that the system remembers which tasks
were run successfully, and re-runs only the failed tasks. To support
this, the control framework captures the state of a process; whether
it is running or completed, and if failures were encountered that
require attention or can be reprocessed automatically.

For example, imagine a work²ow running ±ve tasks in a certain
order. When a failure is encountered while running the fourth task,
both the failing process as well as the work²ow will report failure.
Upon rerun, the ±rst three tasks —which succeeded previously— 
can be skipped. The fourth task will then retry and, if successful,
the ±fth task will be executed.

This mechanic helps in simplifying day-to-day management and
monitoring, but is also important for protecting the consistency of
the overall solution. For example, if the ±rst process in the above
work²ow detects and loads change data delta (differential) from an
operational system using a truncate & load pattern, then this data
delta must be fully committed to all targets before it can be rerun.
Otherwise, the data delta might be lost forever.

Version control

With the fundamental components now in place, the engine is able to
run on its own. However, in order to adjust independently, additional
‘operations7’ components should to be added — the ±rst of which is
versioning.

Versioning is the practice of tracking and saving changes made
to solution artifacts. If you save something, the previous versions
should be retrievable.

There are many versioning tools, plug-ins, and concepts available,
and they should be used in the context of release management

— where a de±ned group of changes can be grouped, tested and
deployed as a ‘release.’

T H E W O R L D O F D ATA

With the engine concept, we take versioning a step further.

In the engine, versioning goes beyond standard version control for individual artifacts.
Instead, it manages snapshots across the design metadata including the information model,
the code generation templates and the data itself as an integrated unit.

This holistic approach captures the state of the entire data solution 
—including data integration logic and data— at any given point in time.

Engine versioning is based on two core premises:  �We can version all our design metadata and code generation templates together  �We can generate all our code, and rebuild the entire data delivery using the PSA concept

If both are true, then we can always (re)deploy the entire solution as it existed at a particular point in time.

In many cases, it is not even necessary to version-control the outputs of the code generation templates.
After all, artifacts like data logistics processes can always be re-created as they were in a given version.
Versioning only the design metadata and code generation templates suf±ces.

This capability even allows the solution to host multiple versions simultaneously. These versions can be com-
pared, tested, and optimized to determine which performs best or meets current requirements most effectively.

This approach transforms the data solution into a time-machine, enabling not just point-in-time restoration
of the solution’s structure and logic, but also facilitating dynamic experimentation and validation across
different solution versions. Unlike traditional bitemporal data systems, this versioning component applies
to the entire solution, offering unparalleled ²exibility in managing both design and operations.

Refactoring

Imagine you start capturing transactions (events, records) early
in the development process using a PSA, but ±nalize your overall
data solution design and model some time later.

In such cases, the ability to ‘replay’ these transactions as if they
were processed at the time of their initial capture would be incred-

ibly valuable.

After all, these transactions have already existed in the PSA for
some time and represent the ‘transaction log’ of what happened.

Loading this historical data into the data solution requires that the
involved data logistics processes have the capability to process data
deterministically. A deterministic process is one that, when executed,
consistently produces the same result given the same input values.

For a data solution, this means processing the same raw data will
always yield the same result in the target table. Adding this capa-

bility introduces some complexity to the pattern. However, while
the pattern becomes more complex, this is offset by the ability
to generate the code automatically.

Having a PSA is essential to do this. It
drives the ability to refactor the solution
in a deterministic way — a controlled
process of restructuring existing code
or design.

Re-initialization
The ability to replay history is referred
to re-initialization. This involves trun-

cating parts of the model and reloading
the corresponding data from the PSA. If
the process is deterministic and nothing
has changed, the results will be identi-
cal to the original output. If the code or
model has been modi±ed, the historical
transactions will be applied to the new
version. With proper version control
in place, it is even possible to revert to
an earlier state and reproduce the data
exactly as it was.

35 | 36

To support re-initialization, data logistics processes
must be able to handle multiple data changes in a
single processing pass. This is one of the  funda-
mental principles of data logistics that underpin
the data solution.

The ability to refactor and re-initialize is essential for
iterative development. Solution designers can re±ne
models and de±nitions over time, knowing they can
refactor and reload the environment, or parts thereof,
as needed.

Following the mindset of this book, change is inevitable
and must be anticipated. Over time, we are likely
to ±nd ²aws in our approach, our patterns, our un-

derstanding of a given technology and let’s face it 
— our models and de±nitions of business terms as
well. This is simply human nature, and goes back to
the fundamental assumptions when dealing with data.
Over time, our understanding of this complex matter
will increase, and imperfections will be addressed
while further developing and testing the system.

Embracing refactoring, supported by re-initialization,
means you can afford some ²exibility while designing
use cases. You always have the option to change your
mind and refactor the design whenever it makes
sense to do so.

The myth of a perfect model
Some argue that refactoring simply means you didn’t
get it right the ±rst time. There seems to be a deeply
rooted mindset in the data community that a data
model should be 100 % correct after the initial design
phase. Indeed, many data solution architectures rely
on this, and choose not to have fallback mechanisms

—like a PSA— in place.

In reality, interpretations of data change often and few,
if any, data solutions are perfect from the start. Have
you ever encountered a data solution that was 100 %
correct on the ±rst attempt, with the perfect data
model and interpretations? In hindsight, haven’t you
looked at past models and realized a different ap-

proach would have been better?

In some cases, a data solution can be refactored even
after interpretations have been applied, but this can
be complex and cumbersome. In other cases, refactor-

ing may be impossible if the required original data
is not available anymore. This can happen when calcu-

lations or aggregations have transformed the original
values into a new data element, but one that cannot
be reversed into the original values — a ‘destructive’
transformation.

Contemporary modeling techniques aim to delay busi-
ness logic application until later in the architecture,
after raw data integration and closer to the consump-

tion of the data. These techniques advocate that, while
it takes time to deliver the single version of the truth,
there is at least the notion of the ‘single version of the
facts.’ Pushing business logic to delivery layers allows
iterative exploration and re±nement of requirements.

However, even the core model and its corresponding
data integration patterns can contain design ²aws. For
instance, a raw Data Vault model might have decisions
around business concepts or business keys that, in
hindsight, could have been better. Modeling data re-

quires making interpretative decisions at every stage.
This is why a PSA serves as the ultimate safety net.

In essence, downstream layers of the data solution
become a form of schema-on-read applied to the raw
data in the PSA. While data can still be persisted in
various layers, the tools now in place allow teams to
evolve their thinking and adapt designs as the orga-

nization grows and changes.

Shifting the mindset
This shift requires modelers to embrace the idea that
mistakes will happen, and designing for change is bet-
ter than attempting to achieve a perfect model upfront.
The reality is that in every business there is diverging
and often limited understanding of what data means,
and it ‘is a process’ to get clarity and understanding
how data should be accurately represented in models.

This perspective applies to design patterns and code
generation templates as well. Models, concepts, tech-

nologies, and even methodologies evolve. Based on our
own experience, we can say that even after working
for decades in the ±eld, we still ±nd the occasional
bug or encounter progressive thinking that would
make us want to reload the environment in a slightly
modi±ed version.

T H E W O R L D O F D ATA

In our opinion, refactoring is not a failure but an ac-

knowledgment of progress — a way to adapt to new
insights and evolving needs.

At this stage in the engine, the foundation is set for
tweaking models, design patterns, or code generation
templates to deliver updated versions of the data so-
lution — even at runtime.

Notification

In addition to the data logistics process control
framework, a monitoring framework is essential
for pro-actively informing developers and support
teams about the integrity of the system. Building a
data solution requires to create trust in the available
data for its users, and a robust monitoring framework
is a powerful way to do so.

Functional and technical errors such as missing data,
duplicates, large delays etc., will erode trust in the
system and hinder its adoption and overall effective-

ness. This problem becomes worse when users them-

selves have to identify and report these issues.

A monitoring framework assists in preventing many
of these issues from happening, and also fosters trust
when issues are pro-actively investigated when they
do occur.

The framework involves detection mechanisms to ²ag
speci±c behavior based on prede±ned rules. When
issues are detected, the noti±cation feature delivers
these results to users and administrators for timely
awareness and actioning.

The monitoring framework consists of a number of
exception checks on the solution, as de±ned in the  testing framework. For example, asserting referen-

tial integrity or consistency for logical groups of data.

The data logistics control framework also plays a cen-
tral role in enabling this functionality. It schedules
and executes the tests and processes responsible
for monitoring the system.

Monitoring tasks
Monitoring tasks are designed as standalone executa-
bles that can run independently, either manually or
via the data logistics control framework. These tasks:  �Collect outcomes from various test cases  �Report on the health and quality of the environment  �Provide proactive insights into the solution’s state

Monitoring outcomes can also feed back into the
engine as environmental metadata. These results can
direct the engine to refactor parts of the solution auto-

matically, based on prede±ned directives. For example,
system information such as CPU usage, memory pres-

sure and disk use can inform the optimizer to adjust
settings or processes dynamically.

Noti±cation rules, as part of the monitoring tasks,
can address a wide range of scenarios related to data
solution integrity and performance, including but
not limited to:

Adherence to conventions  ��Are table names consistently pre±xed or suf±xed
according to agreed conventions?  ��Do core business concept tables include key
attributes but exclude context attributes?  �Are all names in lower case?  ��Are ±le names appropriately structured,
such as including a timestamp indicator?

Infrastructure and environment information  ��Do tables have the correct compression settings?  ��Is index fragmentation exceeding acceptable
thresholds?  �Are query wait states increasing?  ��Does the I/O subsystem work as expected? Is disk
space, latency, or read/write performance within
expected parameters?

Latency and availability  ��How long does it take to complete one full refresh
cycle across the data solution, where all involved
processes have run at least once?  ��What is the current latency between receiving data
deltas and making them available for reporting?  ��Are there any data logistics processes de±ned
but inactive for over a month?

37 | 38

Data consistency  ��To what point in time can referential integrity be
assured in a continuously loading environment?  �Are there any orphan tables?  ��In case of 1:M relationships, does a relationship
really change or was it a case of ‘ghost hunting?’��In case of N:M relationships, is this valid,
or should it be a 1:M?

Data platform optimization  ��Are there full row duplicate records across
the system?  ��Are certain areas experiencing a ‘²ip-²opping’
effect (e.g., repeated inserts and logical deletes)?

Any functional checks on data content  �Does every invoice have an associated customer?  ��Are daily sales ±gures within 10 % of yesterday’s
values at the same time?

An effective approach for noti±cation is establishing a
common schema, and publishing events to a centrally
accessible location. Examples of these could be the
data logistics control framework event log, a database
table exposed via a web page, dashboards, Slack,
MS Teams, or Kafka topics.

Interested parties can then subscribe to these events,
and treat these noti±cations with high priority.

Deployment automation

At this stage, the engine can con±dently deliver spe-

ci±c versions of the data solution, including change
or releases, ensuring that the entire solution can be
generated and processed.

The next step is managing these releases in a de-

ployment operations framework, ultimately aimed at
achieving continuous deployment. By incorporating
a work²ow that is able to operate autonomously, the
solution’s day-to-day deployment can be handed
over to the engine, reducing human error.

A typical work²ow might look like this:  ��Commit changes to a central repository,
using a feature branch

  ��Build and test the changes in a development
environment  ��Initiate a deployment to a pre-production or integra-

tion environment to detect any unforeseen con²icts  �Release to production once validations are complete

This process can range from manual to semi-automated
(e.g., trigger by commits) or fully automated (optimized
by the engine). Implementation details are covered in
the later sections on  automating deployment.

Continuous deployment
So far, this is a fairly straightforward ‘DevOps’ ap-

proach. But using the engine and its available meta-
data, we can further automate the development
and refactoring efforts.

The design metadata ‘knows’ which upstream tables
are impacted by changes. With this information, the
engine is able to automatically generate the necessary
code, update or truncate associated target tables,
and adapt the solution accordingly.

This requires a robust, automated deployment
mechanism that can perform the following actions:  �Deploy physical model changes  �Generate and execute data logistics code  ��Run test cases, log results and notify interested

parties of exceptions  �Perform rollback in case of failure

The engine can trigger these ‘builds’ based on certain
events. This can be a commit to a speci±c feature or re-

lease branch, or as a result of rules captured in the  op-

timizer. For instance, the monitoring framework may
detect a high demand for certain datasets and refactor
the code to optimize against these usage patterns.

‘Ops’ in the engine concept
Deployment automation aims to shorten the delivery
cycle and produce higher quality results. But it is also
intended to foster collaboration between data profession-

als and consumers. Most importantly, it intends to fa-

cilitate communication between involved parties about
the process of data design, integration and delivery.

T H E W O R L D O F D ATA

It is about understanding deployment practices
and see how these can be applied to data, for example:  ��Finding a suitable deployment frequency

that meets business expectations  ��Involving stakeholders in the release process,
by de±ning tests, performing post-implementation
reviews and monitoring the outputs over time  ��Enabling stakeholders to contribute to the information model
and corresponding design metadata, supported by versioning  ��Discuss directives for ongoing optimization of the data solution,
for instance analyzing usage patterns to spot new opportunities
and support decision making on prioritization

An automated deployment mindset helps engaging stakeholders ear-
ly in data design, involving process owners and operational systems
administrator to work towards a full end-to-end data management
approach that is running smoothly.

For example, you could de±ne two alternative designs for a subject
area to see what works best. You could prototype different approach-
es for surrogate key distribution, and evaluate what works best in
a given technical environment or concept. Or, you could consider
table elimination from the model based on usage patterns. It is also
possible to assert what physical delivery of your data solution has
a better outcome for compute cost or I/O.

The engine can then automatically generate
and deploy these improvements.

By embedding deployment automation within the engine, the data
solution becomes a living, evolving system capable of adapting to
new requirements. The engine not only streamlines deployment
but also supports iterative experimentation, enabling teams to ex-

plore alternative approaches and optimize for performance, cost,
or speci±c business needs.

Testing

Traditional data solutions often adopt the principle of judging
data on the way in, requiring data to meet strict quality standards
before being accepted. This contrasts sharply with the philosophy
of this book.

In our vision, all data is welcome. We don’t judge. In fact, we go to
great lengths to make sure all data has a place, including data that
can be considered ‘bad’ quality. We may not have the right context
(at the right time) to make an upfront call on what is considered
‘bad’ and ‘good’ for the consumers of the data.

And, what may be ‘bad’ for one con-

sumer may be ‘good enough’ for an-

other. In exceptional cases it may
exactly be the ‘bad’ data that turns
out to hold golden nuggets of value.

This is why we separate the collection
of raw facts (e.g., via the PSA and the   back room concept) from their inter-

pretation, and it’s also where testing
comes in. Testing, especially related to
data validation and asserting if the data
conforms to speci±c requirements, is a
form of business logic — an interpreta-

tion of data.

However, the testing mechanism in
the engine does not judge data and
then bars it from entering the solu-

tion. Rather, it provides a framework to
monitor and understand the state of
the data across multiple perspectives.

The role of testing in the engine
Testing in the engine serves
two primary purposes:
1) �Tests capture the knowledge gained

during design and implementation,
and store this in a shared repository
so that this can be reused during unit-
and regression testing

2) �Tests are reused as ongoing controls
to verify that the data solution con-

tinues to behave as expected in the
monitoring framework

Both purposes share in an important
feature; a central repository to which
tests can be added. Test can be develo-

ped during the development process as
unit tests or in response to issues, and
act as a permanent record of require-

ments and expectations.

39 | 40

As a guideline, a test should be created every time an exception has been encountered to make
sure this speci±c scenario can be monitored in the future. Developing the test also ensures
that you properly understand the violation in requirements encountered.

In this sense, the terms ‘test’ and ‘control’ are used interchangeably. While testing is used more
in a unit-testing context, and typically focuses more on correct business interpretation, the same
artifact (test case) is used as a control (check) to ensure ongoing consistency of the data solution.

There is no hard and fast rule on what should be tested, but it pays off to embed any understand-
ing accumulated during development in the testing framework. At design and development
time, a lot of business understanding is gained in a relatively short amount of time, and capturing
this knowledge in a test case that outlines the expected behavior is a powerful way to embed this
knowledge in the solution. This aligns with Gojko Adzic’s ‘Speci±cation by Example’ (2011),
where examples are used to de±ne and validate system behavior.

Tests can be developed for a wide variety of scenarios, including but not limited to:  �Validating data against domain values  �Detecting uniqueness constraint violations  �Ensuring completeness of timelines in temporal data  ��Identifying outliers in sales or volume data using statistical thresholds
(e.g., two standard deviations from the mean)  �Verifying referential integrity

Testing framework
A testing framework, of which many are available either as open source or as part
of commercial software, at a minimum has the following functionality:  �A repository to store test cases  �A standardize format for writing test cases  �A set of evaluation functions (e.g., assertions, range checks, binary checks)  �A mechanism execute tests and display the results

Simply put, a functional testing framework allows one or more tests to be executed
and the results of the performed tests to be returned. This allows tests to integrate with
deployment automation for regression testing and with the monitoring framework.

The testing framework can be combined with the event log of the data logistics process
control framework, providing a uni±ed monitoring point for the entire data solution.

Labeling data
Validating data is not the same as rejecting it. So how then should we act
when the tests inform us of issues?

The solution is to ‘label’ the data that does not pass certain tests. This allows the data solution to
manage data both in the incoming layers (‘back room’ in the data solution design) as well as the
delivery layers (interpretation, ‘front room’) without physically ±ltering or removing the data.

T H E W O R L D O F D ATA

Optimizing using environmental metadata
As the system operates, environmental metadata is

created. While design metadata drives the logical
structure of the solution, environmental metadata
records system performance, such as available re-

sources, processes execution times, memory and
disk space.

Environmental metadata functions like a ‘sensor,’
monitoring system performance and apply this to
determine the optimal physical implementation
for a given directive or use case.

This is the ±nal component of the engine,
the optimizer.

Through the optimizer, the engine is made aware of
technological constraints and directives (parame-
ters). By interpreting the environmental metadata,
and taking into account the directives, the engine
can automatically refactor data structures and data
logistics processes to make the most ef±cient use
of the available technical environment.

Examples of this are:  �Normalize or denormalize data structures  �Select optimal aggregation strategies  �Choose the best key distribution technique

For example, the engine might assess whether hash
keys, sequence values, or natural business keys are
best ±t for a Data Vault implementation. Depending
on the data pro±le, hash keys can be costly to store
and retrieve. A typical hash key quickly requires
16 or 20 bytes storage per key, whereas integer
sequence keys typically only require 4 or 8 bytes.

However, sequence keys introduce dependencies
which may impact overall data delivery requirements.
A ‘middle’ option of using natural business keys can
also be considered. This might require less storage
space and does not incur processing dependencies.

Based on environmental metadata, the engine can
dynamically select or even combine these methods
for optimal performance.

Unless speci±c overrides are in place, decisions are
driven by data pro±les and optimization directives
(e.g., cost, compute, storage) rather than subjective
preferences.

This is possible by interpreting the statistics and exe-

cution times from the data logistics control framework,
as well as outputs received from the monitoring frame-
work. With this, the code can be re-generated using a
different template, and the updated solution can be
automatically deployed and re-initialized.

This process modi±es the physical delivery while
maintaining consistency in the design metadata 

— automated refactoring.

Directives
The optimizer applies rules, directives, to determine
how the data solution should operate. These opti-

mization goals can be set by the administrator,
and may include:  �Reducing compute or storage costs  ��Achieving speci±c data latency thresholds

(data freshness, availability)  �Achieving speci±c data latency thresholds  �Balancing I/O, storage, or compute utilization  �Improving query performance for selected domains

The optimization process can be a fun and engaging
way to manage the data solution.

Different implementation approaches can be simulated
and compared (e.g., hash keys versus sequence keys) to
determine the most effective approach for the environ-

ment. The optimization outputs also provide trans-

parency that can be used to manage the environment
— for the data team as well as the consumers of the data.

After all, delivering data solutions often involves a
careful balance between resource (cost) constraints
and business requirements.

Finite resources can be applied for speci±c outcomes,
but it also makes the point that the sky is not always
the limit, and that restricting certain resources will
have an impact on important data solution metrics,
such as latency.

T H E W O R L D O F D ATA

Environmental parameters

The ‘Engine’

Optimizer

Information Model

Design Patterns

Business Logic

Notification Refactoring

Data Logistics
Process Control

Version Control
Code Generation

Templates

Design Metadata Persistent Staging

Testing

Deployment
Automation

Starting the engine

When the engine components are fully con±gured, the data solution becomes an active
system capable of rapid, reliable delivery. While information models and project plans still
need thoughtful design, we know that the engine can deliver fast and consistent results
and supports our journey in uncovering the meaning behind the data.

From the moment the ±rst data is processed, we can start understanding the effects the patterns
have on the data. We can immediately see the initial results of our modeling decisions. Environ-

mental metadata begins ²owing in, allowing the optimizer to suggest or trigger re±nements.

With the engine, data professionals no longer need to focus on low-level physical data model
decisions. Instead, methodologies and best practices are embedded into the engine as conven-

tions, freeing teams to focus on higher-level goals such as innovation, collaboration, and
alignment with business objectives.

43 | 44

15
Data Engine Thinking
— taking the next step

Ready to put Data Engine Thinking into action?

You’ve explored the principles — now it’s time to bring them to life in your organization.
Whether you’re just getting started or ready to scale, we’re here to help you go further, faster.

As your journey continues, we invite you to connect on
https://dataenginethinking.com.

Our website has the latest information about the services we provide, including:  �Our training schedule  �Our coaching opportunities, including individual and team-based coaching  �Talent mentoring  �Assessments and reviews  �Consultancy

Let’s unlock the full potential of your data together.

Data Engine Thinking covers the end-
to-end methodology to deliver a data
solution that is truly designed to adapt
to progressive understanding - and
ultimately meet the business‘ needs.

dataenginethinking.com

Roelant Vos &
Dirk Lerner
The Authors

Get your
copy here

Having worked as a consultant,
trainer, software vendor, and
decision maker in the corporate
world over the years, Roelant has
observed data management from
many different points of view.

Dirk is an experienced independent
consultant and managing director
of TEDAMOH. He is considered a
global expert on BI architectures,
data modeling and temporal data.

Data Engine Thinking

 dirklerner.com roelantvos.com

	● Design and implement a solution that
is designed for change

	● Solve real-world problems
encountered when working with data

	● Fully automate your delivery

