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02  
the world of data 
It's no surprise that ‘data’ sits at the heart of data solutions, particularly within Data Warehouse ecosystems. 

Data shapes the fundamental capabilities that a data solution must deliver.

To truly understand this, let’s take a closer look at what data actually is and how it behaves  

within our systems and processes.

Fundamental assumptions when dealing with data 

When working with data, it is often helpful to make 
assume that —at least for the purposes of designing a 
data solution— any initial requirement may be ‘wrong.’ 
Instead, business requirements and questions are 
better viewed as starting points for a deeper process  
of data discovery, clari±cation, and understanding  
in collaboration with subject matter experts.

This cautious approach applies not only to require-
ments but also to the data itself, which should be 
approached as potentially unreliable.

In short, when interpreting data, we assume that the 
questions that we’re asked may be wrong, the data we 
have available may be unreliable, and the operational 
systems that captured data are inherently imperfect.

We believe that a data solution that is designed to  
solely to meet an upfront requirement is unlikely to 
achieve the intended business outcome.

This may sound somewhat negative, but it simply re-
²ects a commitment to building ²exibility in the data 
solution, so that we can adapt when the results don’t 
align with expectations.

This ²exibility enables gradual testing, learning from 
the available data, improving data quality, and build-
ing a knowledge base together with subject matter 
experts.

We assume that individuals work to the best of their 
abilities, and with the right intentions, but that no  
single person has a ‘full picture’ of the complete  
history of systems, processes, and workarounds 
across the entire organization.

Over time, organizations may accumulate consider- 

able ‘technical debt’ from implementing workarounds 
that were never fully corrected. Sometimes, the origi-
nal reasons for these ±xes may even be lost entirely. 
These past decisions are still re²ected in data, and  
are often considered ‘data quality’ issues.

Data teams often have limited control over the opera-

tional systems, and may not be fully across the history 
and evolution of these systems and their data. Fixes to 
data which have been applied in the past may not have 
been recorded, or changes were allowed through back-
end access or APIs that should not have been allowed.

Sometimes, all that remains is the trace left in the  
data itself, and it’s up to us to make sense of it.

Given this complexity, we consider it a best practice  
to design for repeatability in data clari±cation until  
a shared understanding is reached. And, as in scien-

ti±c ±elds, this understanding may evolve as new 
evidence or perspectives emerge.



However, and this is a key guiding principle, the data itself —the events that happened and were recorded  
in the data solution— remains immutable. The data will never change. It is just our perception  
and understanding of them that shifts.

By embracing this, we can design data solutions that support ongoing data clari±cation,  
continuous learning, and an adaptive approach to data management.

A machine designed for change 

The data solution de±ned in this book is fundamental-
ly different from what traditional data solutions were 
perceived to be.

Because of the nature of data and the need to progres-

sively understand it, we can’t de±ne the data solution 
by its reporting, Data Warehouse, Business Intelli- 

gence, or Advanced Analytics requirements alone.  
Rather, to be successful, the data solution needs to  
be able to adjust constantly to facilitate continuous 
clari±cation of these requirements.

For example, take the ±rst iteration of a given report-
ing requirement. As per our fundamental principles, 
we will assume that both the question itself as well as 
the data we have to answer it are not ±t for purpose. 
Of course, we do our best to assist the consumer in 
question, but always keep the possibility open that 
adjustments will be required.

The solution may deliver an initial data set based on 
what is available in the various relevant operational 
systems, but without any interpretation applied. When 
this initial report is presented to a subject matter ex-

pert, he or she is likely to respond with feedback that 
highlights issues and proposals for adjustments with 
some sort of business rule.

Thank you for your requirement!

This feedback then can be incorporated into a sub- 

sequent version — as a new interpretation on the  
raw data.

And so the process continues.

The dynamics of data are so varied that, without this 
continuous feedback loop, it will remain unclear if a 
given ±nding may simply be a data quality issue,  
or a genuine insight. The ability to reprocess the 
original data —the immutable events— with different 

interpretations, or lenses, is a key capability  
that we believe the data solution must have.

This can be achieved by separating the data  
ingestion from its interpretation.

This is an aspect of separating concerns,  
something that will be covered in-depth later.

Reprocessing of data when new understanding be- 

comes available —supported by code-generation and 
automation— is a powerful way to assist organizations 
in their journey of improving their knowledge of the 
data and the involved business processes.

But, it is not only the capability for reprocessing of 
data when new clari±cations emerge that is essential. 
Systems and infrastructure often change over time as 
well, both for the data solution itself and for the orga-

nization as a whole.

A successful data solution is adaptable at a technical 
level as well. New technologies and concepts become 
available all the time — the only constant is change. 
These may change the way data can be managed.  
It pays off to be adaptable and scalable to be able to 
make the most of these opportunities when they arise.

For example, being able to scale out to different tech-
nical architectures for the components where this 
makes sense. Or switching out loading technologies 
(i.e., Extract-Transform-Load, or ETL, platforms)  
for different approaches.

In these cases, it is just the technology that may 
change. As we will see in this book — the design,  
concepts and metadata will remain.

Lastly, the organization itself is not static either. Many 
organizations are continuously evolving, conquering 
new markets, introducing new products and business 
models — divesting or sun-setting other parts of the 
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business. This too has an effect on  
the data that is available, and the way  
it is used.

In a way, an organization can be seen  
as an organism that is continuously 
adapting, and a data solution should  
try to match the pace and agility of  
these changes as much as possible.  
This means that the intent, direction, 
goals and delivery of the solution may 
change often, and fast.

The closer the data solution can stay  
to this ever-moving goalpost, the more 
successful it is likely to be.

Many products, regardless if they are 
consumer goods or software products, 
are designed for a speci±c purpose and 
created exactly as per the design. If you 
design a dining table, the speci±cations 
are usually very clearly de±ned. You 
would expect the ±nished product to 
be exactly as was intended — the dining 
table may be returned to the store if not!

Designing a data solution following the 
practices explained in this book is done 
with a very different mindset. The data 
solution is not designed for a speci±c  
deliverable, it is a machine that is design- 

ed for change.

The role of a data solution 

The previous sections highlighted many 
of the challenges in working with data 
and emphasized that data interpreta-

tion is often a gradu-al, iterative process, 
typically undertaken with subject mat-
ter experts. With each iteration, our 
understanding of what the data means  
and how it behaves becomes clearer.

When these understandings are estab-
lished, there’s a natural tendency to 
solidify them in the data solution as 
‘business logic,’ using calculations or 

code to apply speci±c transformations. However, it can be helpful to 
consider how much of this complexity the data solution should absorb.

What issues can, and should, the data solution address? Where 
should architectural decisions be made to make data ±t for its in-
tended purpose? To what extent must the data solution implement 
complexities to address shortcomings in the system landscape?

These can be important considerations, but they are often in²uenced by 
speci±c contexts and personal preferences. Regardless, decisions must 
be made with a full understanding of their potential rami±cations.

The Data Management Association (DAMA) offers helpful guidance 
here through its Data Management Body of Knowledge (DMBoK).

This reference provides various de±nitions and context around  
common terms related to ‘data.’ From the perspective of the data  
solution, it is often good to remember the context we work in, and 
what the relationships and roles are to related areas of expertise.

Inspired by the ‘DAMA Wheel,’ the illustration below  
shows these areas:

Here, the implementation of the data solution falls under the data  
governance umbrella as part of ‘Data Warehousing and Business  
Intelligence.’ This can be a sobering realization for many profession-
als involved in these disciplines, but it is also a very helpful one:  
not every data problem need to be solved by the data solution.

Consider, for example, the varying de±nitions of a ‘customer,’ ‘policy,’ 
or ‘premium’ in different parts of a business. Such disparities can be 
challenging for traditional Data Warehouse solutions, especially if 
the goal is to deliver a single version of the truth.
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This objective often requires extensive upfront align-

ment on interpretations. These outcomes are subse-

quently cemented into the information model, and 
data must be mapped or transformed to this de±ni-
tion — a heavy and onerous upfront design  
and development effort.

When interpretations change or disagreement occurs 
at a later stage, the efforts to accommodate these 
changes can be signi±cant.

An alternative approach is to acknowledge that 
different business areas may have different require-

ments, and that it may not be immediately needed to 
align or agree on interpretation. It might be better to 
‘agree to disagree’ initially. As long as the data solution 
accurately represents the facts —the raw events as they 
occurred— interpretations can be adjusted iteratively 
over time.

Often, shared de±nitions for common business 
entities emerge only after prolonged exploration,  
and a process of ‘guided democracy’ where senior 
leadership, perhaps even a Chief Data Of±cer,  
strives to align all stakeholders.

Rather than placing the burden on the data solution to 
±nd a common solution, it should be able to accom-

modate and even report on competing interpretations, 
providing a basis for further discussion rather than 
forcing a single interpretation upfront. This way, the 
burden of ±nding a common de±nition shifts from the 
data solution to the data governance process.

It may be possible that there are even multiple de±ni-
tions of information that are considered ‘core’ such 
as revenue or customer. This can be an eye-opener 
to: how is it possible that there are so many different 
views on revenue?

When agreement is reached, the updated interpre-

tation can be reported back to the data solution and 
addressed in future iterations.

Thank you, again, for your business requirement.

One key advantage of this approach is that it both 
increases the speed to value, as well as engagement  
of the stakeholders. The approach can be made  
fully transparent.

While the goal of achieving a single version of the 
truth is noble and should remain part of the long-term 
strategy, it may not be the responsibility of the data 
solution to deliver this. Instead, it is better suited as 
an objective for a comprehensive data governance 
program.

This is why a fundamental design decision is that the 
data solution is not designed to be the source of truth. 
Rather, it is designed to be the source of facts as they 
occurred, without any speci±c interpretation.

Throughout this book, we refer to this as the  
single version of the facts.

Data represents the events created by systems when 
certain processes occur. It is the core purpose of the 
data solution to record this correctly, timely, and 
completely.

Resolving differences in interpretation, however,  
is ultimately a task for data governance.

Solutions for ongoing data interpretation 

A data solution, such as a Data Warehouse,  
can be considered to be a necessary evil.

In an ideal world, there would be no need for it. Ideally, 
optimal data governance and near real-time multi-di-
rectional data harmonization would have created an 
environment where it is easy to consume data across 
systems without any ambiguity. The same applies to 
business logic — if everything is neatly organized in an 
all-encompassing data architecture, how many trans-

formation rules would still be required?

This ideal scenario remains beyond reach for most 
organizations and, more broadly, for the data industry 
as a whole.

However, treating data solutions as mechanisms to 
facilitate communication can help move an organiza-

tion closer to this ideal. Achieving this is yet another 
reason that a data solution needs to be ²exible, quick 
to adapt, and easy to manage.

Herein lies a paradox, which will be a recurring theme.
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To make a data solution suf±ciently ²exible, easy to manage, and 
able to adjust at the speed the business operates, the solution re- 

quires multiple well-de±ned layers, areas of design, and frameworks.

At ±rst glance this may appear to be a complex con±guration.

A paradox of complexity 

The ²exibility required for a data solution often introduces complexity,  
typically manifesting as distinct ‘layers’ and ‘frameworks’ within the  
solution design, each focused on implementing speci±c concepts.

A common question that arises is whether it’s worth investing time and effort  
upfront in what might appear to be a complex system involving various layers  
and concepts.

Wouldn’t it be simpler to just query the raw data directly, without the hassle of  
managing multiple data management and interpretation layers? How can we 
strike the right balance between necessary complexity and desired functionality?

It is our opinion that a necessary baseline of functionality needs to be in place  
to ensure ef±cient and effective management of a data solution — including the  
refactoring necessary to adapt to changing data interpretation.

We will refer frequently to the term ‘refactoring.’ In this context, refactoring  
involves redesigning parts of the solution to optimize it for a given scenario.  
It’s a concept borrowed from software development, where it typically refers  
to improving existing code without necessarily adding new features.

Refactoring may not always yield visible changes to the end user, but it often  
results in code that is more ²exible, maintainable, and robust. We believe that  
refactoring is a ±tting term for the restructuring of the data solution, aimed  
at delivering the intended optimization outcomes.

Our goal is to de±ne and standardize this necessary complexity upfront, so that it 
becomes a natural part of the solution rather than a barrier to implementation.

This foundational baseline, with its well-de±ned layers, design areas, and suppor-

ting frameworks, is critical for making the data solution easy to operate and main-

tain. It facilitates refactoring —even automated— and supports quick adaptation.

While these concepts may add complexity, they can be standardized and integrat- 

ed into automated code generation and delivery. By establishing this baseline,  
we believe that data solutions can become a machine designed for change,  
capable of evolving alongside business needs.

We will explain our approach using the concept of separating concerns,  
the mindset of data solution virtualization, and the implementation  
framework of Engine Thinking.

Together, these three concepts form the speci±cation  
of the data solution we propose.
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Separation of concerns 

A key concept to ensure that the inherent complexity 
of data solutions can be managed in a simple way is 
the separation of concerns. Separating concerns means 
breaking down the tasks that a data solution must 
perform into smaller, modular, and atomic processes, 
each with a de±ned role within the overall data and  
IT architecture.

This approach stands in stark contrast to traditional 
methods, which often feature complex, monolithic data 
logistics processes. These processes typically perform 
numerous functional steps in a single operation.

For example, typical two-layered solution designs 
approaches (e.g., dimensional models or Kimball-style 
Data Warehousing) load data into a staging area (layer 
1) that resembles the target model (layer 2). Data is 
then merged with the already existing information.

The data logistic processes that execute this logic 
have to support a broad variety of functions,  
including but not limited to:  �Implementing a variety of business rules  �Integrating multiple data sources  �Managing changes over time  �Key distribution  �De±ning structure and hierarchies  �Balancing performance requirements  �Handling granularity and aggregation  �Detecting data changes

This may result in solutions that can be dif±cult to 
extend, and tend to suffer from increasingly complex 
interdependencies. The resulting effort to implement 
changes pushes out delivery time, and creates a gap 
between the required functionality of the solution 
and the degree that these requirements have been 
implemented.

This can lead to critical issues and the emergence of 
alternative solutions that may eventually render the 
data solution obsolete, especially as requirements 
evolve over time and become harder to keep pace with.

The larger the system grows, the wider this gap  
tends to become.

‘Hybrid4’ modeling approaches, which combine 
elements of normalized and dimensional modeling, 
tackle these challenges by separating the fundamental 
housekeeping of data solutions from business logic, 
maximizing ²exibility and ease of maintenance.

Unlike more traditional forms of dimensional model-
ing, where a single process often handles multiple 
functions, hybrid modeling techniques decompose 
these tasks into distinct, atomic operations.

For instance, key distribution is managed by core busi-
ness concept entities representing the central busi-
ness keys, and historization is embedded in context 
entities. Additionally, relationships between business 
concepts are modeled separately using natural busi-
ness relationship entities.

Business rules —or the interpretation of data— are 
layered on top of the raw data, but only after it has 
been safely recorded — rather than applied when the 
data is loaded into the data solution. This approach 
preserves the integrity of the original data while  
enabling ²exible interpretation.

Requirements inevitably change over time, especially 
during the early phases of data projects and more 
generally as business needs evolve. By separating the 
delivery of information (via business rules) from the 
storage and management of raw data, hybrid modeling 
techniques —supported by a matching solution ar-

chitecture— make it easier to accommodate different 
perspectives and reduce the complex interdependen-

cies often seen in traditional approaches.

Hybrid modeling techniques acknowledge that the 
‘truth’ is subjective and may differ across consumers of 
data, even within the same organization. While there 
may not be a single version of the truth, there is always 
a single version of the facts — the immutable transac-

tions that serve as a reliable foundation for delivering 
multiple interpretations.

This approach forms a core part of our methodology, 
and we will explore it in detail throughout the follow-
ing chapters.
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Data solution virtualization 

In the data modeling community, discussions often focus on speci±c, 
technical topics closely tied to the physical implementation of data 
solutions.

For instance, in Data Vault methodology, questions like ‘Do we still 
need Hubs?,’ ‘Should we create separate tables for each attribute?,’  
or ‘Is this transaction better modeled as a Hub or a Link?’ tend to 
center around physical implementation details.

While these are interesting considerations, it can be much more 
valuable to separate the principles and concepts from their techni- 

cal implementation choices — and use these to agree on how to  
best create value for a business using data.

Physical data modeling concepts and methodologies are subject to 
evolution themselves, it’s not just the business, models, and tech- 

nology that evolves. Newer, sometimes better, ideas emerge regu-

larly, and it is essential to periodically reassess and adapt existing 
approaches. It’s also perfectly acceptable to experience a form of 
atavism —where certain practices resurface after a period of  
absence— if they provide a good solution for today’s problems.

How do we keep the things that work in the current environments, 
and move away from what doesn’t make as much sense anymore?

Inevitably, there will be some tension between adhering to pre- 

scribed standards and this evolutionary mindset. Rigidly following 
an implementation standard may lead to dead ends. Some ideas 
lose relevance, don’t work as well using certain technology, or prove 
less effective than anticipated. Methodologies must evolve to remain 
practical; otherwise, they risk becoming obsolete — along with any 
solution that strictly follows them. However, by adopting a mindset of 
continuous improvement, where designs are iteratively adjusted, the 
likelihood of long-term success and relevance increases signi±cantly.

This is where the concept of data solution virtualization  

comes into play.

Data solution virtualization is a mindset where changes in data  
models, concepts, patterns, and business logic are directly and auto-

matically translated into the implementation and deployment of the 
data solution. It’s refactoring taken to the extreme: when you update 
your model or design, the data solution adjusts itself automatically.

The virtualization aspect alludes to the idea that —given suf±cient 
resources— any interpretation of data can be generated at runtime. 
In essence, the entire data solution could be ephemeral, recreated as 
needed. However, in the real world, resource constraints mean that 
the actual implementation may vary. This could involve recreating 
views, dropping and rebuilding database tables, or regenerating  

and executing the data logistics pro- 

cesses needed to repopulate tables  
with up-to-date data.

Regardless of the speci±c implementa- 

tion, the outcome remains the same. 
Even if development and deployment 
follow a controlled, gated approach  

—which is often the case— this method 
allows for previewing a design before 
formally committing to it. It enables 
direct examination of the data outputs 
resulting from data modeling and inter-

pretation logic, without needing to fully 
develop the entire solution ±rst.

This can be particularly helpful during the 
early stages of development, where there 
typically is more volatility in the design.

A paradox
At ±rst glance, data solution virtual-
ization may give the impression that a 
physical data solution is unnecessary, 
which presents another paradox. If you 
can represent your target data model as 
a set of views and automatically allocate 
infrastructure resources for optimal 
runtime performance, does it still make 
sense to implement the solution using 
physical tables and corresponding data 
logistics processes?

The answer, in most cases, is still yes  

— at least for now. This is due to various 
factors, such as the available technical 
infrastructure, software capabilities, 
performance considerations, and the 
size of data sets.

However, the purpose of data solution 
virtualization is not necessarily to ren-

der traditional data logistics obsolete. 
Instead, it serves as a litmus test to ver- 

ify that all the necessary capabilities  
of the data solution are in place, and 
properly con±gured.
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A useful way to think about this is: if you can generate and deploy 
your entire data solution using queries or views based on metadata, 
then you can also use the same metadata to deploy the solution with 
physical tables and data logistics processes.

A core concept here is the ability to process data deterministically.  
Deterministic processes always produce the same outcome when 
given the same input values. In databases, deterministic queries con-

sistently yield the same results when run against the same data set.

When your data solution is guaranteed to be deterministic, it pro- 

vides ²exibility in choosing how the results are delivered. In essence, 
when processes are deterministic, data solution virtualization treats 
the main functionality of the data solution as a commodity that can 
be deployed into a speci±c physical design and supporting data 
logistics. The physical implementation becomes a parameter.

Returning to the vision of data solution virtualization, what seems 
realistic is that many functions of the data solution will increasingly 
move into the background. The exact speci±cations of the physical 
model become less relevant, as these are driven (and automatically 
refactored) by de±ned optimization rules. For example, automated 
refactoring might eliminate the need for manual decisions about 
splitting Satellites due to high change rates in a few attributes.  
The engine might decide to create multiple physical tables for  
a single context of a business key —or not— depending on  
the data dynamics at the time.

Instead, the focus can shift towards the information model,  
including the de±nition and interpretation of data entities,  
with everything else derived automatically.

Data solution virtualization, as a test of fundamental capabilities,  
demonstrates that the data solution can evolve alongside the business, 
continuously bridging the gap between raw data and its consumption. 
The exact requirements for achieving this make up the core of the 
engine, which will be detailed in the s Engine Thinking  section. 

Engine Thinking 

To implement the vision of data solution virtualization, and fully em-

brace ²exibility through automation, we can integrate the necessary 
components for delivering a reliable and adaptive data solution into 
a cohesive system capable of operating autonomously.

This capability —to treat the data solution as a dynamic communi-
cation asset while maintaining principles like layered design and  

separation of concerns— is what we 
refer to as Engine Thinking. 

The engine concept acknowledges that 
many technical implementations share 
a common foundation in terms of their 
information (e.g., conceptual and logi-
cal) models and essential components. 
The resulting physical data model and 
data logistics processes can be viewed 
as by-products — outcomes driven by 
the optimization needs of the solution.

Consider the analogy of a database 
optimizer, which uses statistics and 
parameters to determine the most ef±-

cient way to execute a query. The engine 
operates in a similar manner, but at the 
application level. It continuously re±nes 
the physical model based on usage pat-
terns and performance considerations, 
optimizing the implementation auto-
matically in the background.

Imagine the utility of embedding these 
optimization decisions as parameters, 
letting the engine drive the creation of 
the most suitable physical structures.  
Or even better, allowing an intelligent op-

timizer to decide the optimal approach. 
If we elevate the data models (and cor-

responding design choices) to a higher, 
abstract level, many low-level physical 
model implementation decisions can be 
streamlined, or even eliminated.

Do we really need to worry about how 
relationships are modeled physically 
when we agree on their existence at 
a conceptual level? Is it necessary to 
physically instantiate key tables if they 
are rarely used in queries? Could we 
generate them only on demand?

Does it matter to the information model 
if certain columns are moved into sepa-

rate objects for performance reasons? 
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Should relationships always be represented as unique instances  
(e.g., core business concepts or key tables), or can they be man-
aged as many-to-many tables? Should we select a speci±c hashing 
approach across all tables, or can we balance out necessity and  
performance versus risk appetite for collisions in the algorithm?

These questions, and many others like them, can be addressed 
through the engine concept. The key lies in connecting the compo-

nents required to build the data solution effectively from the outset.

The engine combines a suite of related capabilities that facilitate  
a ²exible approach to designing and managing data solutions.  
The diagram below outlines the core components of the engine.  
Each concept is explored in-depth in subsequent chapters.

The engine is governed by a combination of design metadata and 
environmental metadata that decides and manages how the physical 
models and corresponding data logistics processes are generated, 
deployed, and maintained.

The core premise of Engine Thinking is to establish a mechanism 
that enables (re)modeling of data, while the technical solution is 
automatically refactored in the background to accommodate new  
or revised designs. Technically, this includes capabilities like auto-

matically rede±ning physical tables and reloading them with data 
using dynamically generated data logistics processes — and more.

Now, let’s begin constructing our own engine by diving deeper into 
these concepts and aligning them with the right technologies and 
frameworks.

Design patterns 

The foundation of any code generation 
or automation efforts is a clear under-
standing of what needs to be accom-
plished. Design patterns offer a struc-

tured framework for documenting the 
core concepts of the solution, including 
data logistics processes.

They serve as a ‘what’ and ‘how-to’ 
guide, detailing these concepts while 
remaining technology agnostic — inde-

pendent of any speci±c implementation. 
Design patterns are explored in depth in  
the  data solution architecture sections.

For now, it’s important to emphasize 
that any key decision made by the en-

gine should be grounded in a well-docu-

mented design pattern. Code generation 
templates, in turn, act as the practical  
implementations of these design pat-
terns, translating the documented 
concept into executable artifacts.

Design metadata 

Design metadata is software and plat-
form agnostic, and focuses on conven-

tions and source-to-target mappings 
— including data de±nitions and trans-

formation rules.

An example of design metadata is the  
de±nition of the core business concepts 
and their relationships (a convention),  
or a transformation to conform a specif- 

ic data set to a de±ned target (a lineage,  
business rule, or source-to-target 
mapping).

This type of metadata is closely tied to 
the concept of design patterns. These 
essentially guide the delivery of the  
data solution by using design meta- 

data as input.
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Design metadata de±nes how many data logistics processes are expected, captures how data  
is transformed, and determines what data needs to go where. In the  code generation chapter,  
we will introduce a standard format to record design metadata.

Design metadata encompasses all metadata necessary for deploying a solution, including:  ��Process and data logistics details, recorded as ‘mappings’ or lineage information  
capturing where data is moved to — or interpreted from  ��Storage metadata, describing objects such as tables, views, formats, domains.  
These can either be derived using conventions, or speci±ed directly

Managing design metadata is the cornerstone of the engine, particularly de±ning the source  
and target models (structure metadata) and establishing source-to-target mappings (process  
or data logistics metadata).

Each organization has its own systems and processes, and mapping these to a data model is 
always tailored and speci±c. This is why design metadata is the true intellectual property (IP)  
of the data solution. It encapsulates the unique and custom interpretations of data speci±c  
to an organization.

When combined with code generation templates and guided by design patterns, design metadata 
drives the automated creation of data logistics processes. Design metadata de±nes the what,  
while the code generation templates provide the how. Together, they form the essential com- 

ponents that fuel the engine.

At this stage of the engine, a standardized framework for recording design metadata is in place.  
This repository will serve as a foundation, gradually enriched as additional components  
of the design are ±nalized — particularly the de±nition of the information model.

As the design evolves, the metadata will capture and re²ect these developments.

Persistent staging 

A persistent staging area (PSA) forms the backbone of a ²exible data solution. It acts as an immutable archive,  
capturing all original transactions that have been presented to the data solution before any transformation  
or interpretation is applied, including data modeling.

Often referred to by other names like ‘history zone,’ the PSA can be broadly de±ned as an insert-only, time-
stamped log of all transactions (events) received by the data solution and organized by arrival time. The PSA  

can be implemented using databases, tables, logs, streams, ±les, or a combination of these technologies.

Because the transactions stored in the PSA are original and immutable, the PSA enables deterministic  
(re)processing of data. Reprocessing simply means running the input data through updated logic,  
recalculating the output. This capability is essential for replaying historical transactions against  
an revised target data model or modi±ed transformation rules.

The main purpose of the PSA is to store raw, unaltered transactions for potential reprocessing  
when design metadata changes. This includes changes to the target model itself, which may  
evolve as details are re±ned and reconsidered.
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This aligns with the iterative approach of 
clarifying data meaning over time. Even 
with the best intent and skills, initial mod- 

els may not fully capture all nuances, 
and are therefore subject to change.

The PSA provides a reliable foundation 
for reconsidering raw transactions from 
different perspectives. It allows an or-

ganization to solve the inherent overall 
complexity of its business incrementally.

An application-readable log
A helpful way to think about a PSA is 

as an event-based system — an applica-
tion-readable ‘log’ that is similar to a 
transaction log in a relational database5.

In database systems, a transaction log is 
an insert-only, time-ordered sequence 
of data events (inserts, updates, deletes). 
It is central to how databases work. Data 
events are ±rst written to the transac-

tion log and then propagated to (poten-

tially) various data structures such as 
tables or indexes, which serve as repre- 

sentations of these events. Events can 
even be forwarded to other systems 
through techniques like log shipping  
or transaction log-based replication.

For a database, the log is the ultimate 
source of truth — the main record of all 
changes. It is also essential for imple- 

menting the ACID6 principles. In a 

mature system, this is handled almost 
autonomously in the background  

— but it remains a fundamental  
mechanism for ensuring data  
consistency and reliability.

Pub/Sub
A PSA operates as a ‘Write Once, Read 
Many’ (WORM) system, where multiple 
data logistics processes can indepen-
dently ‘read’ from the log. Each con- 

sumer can track its own processing 
state using pointers like inscription 

timestamps, which indicate the time of the event’s arrival  
in the PSA. This way, consuming data ²ows, selections or  
streams manage their own load window and can therefore  
operate completely independently.

The PSA does not need to ‘know’ which processes use the log,  
or how up to date they are in their processing.

This independence aligns with the principles of the publish- 

subscribe (pub/sub) pattern, where producers (data sources)  
and consumers (data processes) operate independently  
without direct knowledge of each other.

This approach even makes it possible to support applications that 
only require to be online from time to time, and allow them to sync 
their data when required. Applications control the way they con- 

sume data. It is only necessary to track the event up to which  
processing is completed.

For the data logistics processes of the data solution, this works the 
same way. Essentially, every data logistics process can be independent 
and maintain their own state and consistency. In a sense, they are all 
individual consumers of the application-readable log. This supports 
an almost endless degree of parallelism and ²exibility in data pro-

cessing, something that will be explored throughout this book.

Implementing the PSA
A PSA can be implemented using a wide range of technologies. Re-

gardless of using database tables, ±les, or streams, the core concept 
remains the same: an insert-only, time-stamped sequence of events.

In databases, this may involve physical tables, while other imple-

mentations might use formats like Parquet, Avro, Iceberg, JSON,  
or HDFS.

Contemporary technologies support this concept, including bridging 
solutions like PolyBase and distributed commit log systems such as 
Apache Kafka, Azure Event Hub, Amazon Kinesis, and Google Pub/
Sub. These are just some of the technologies available at the time 
this book was written. In the future, different tools and techniques 
are likely to be available. However, the concept is expected to remain 
the same.

These tools offer scalability, high throughput, fault tolerance, and 
features like log retention and partitioning. They allow consuming 
applications to subscribe via APIs or services. This way, the PSA 

effectively becomes a ‘stream’ with potentially in±nite retention  
(Time to Live, TTL) — an institutional memory.
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We have explored the role of the PSA within the context of a data solution,  
where it acts as a central repository capturing transactions from various  
operational systems. However, the possibilities of the PSA extend beyond  
just supporting the data solution.

Besides supporting the myriad of automatically generated atomic data logistics 
processes that consume data from the PSA into the data solution, the PSA can  
also serve as a subscription source for any information-consuming system.

This positions the PSA as a central ‘data hub’ that provides the infrastructure to 
provide raw data change events to any other system that requires it — often an early 
win in data projects. Downstream processes can consume events independently 
and at their own pace, and as supported by the available technology.

Information model 

The information model serves as the brain of the data 
solution, shaping how data ²ows through the system,  
and ultimately unambiguously describing what the 
data represents.

At this stage of the engine, design patterns detail how 
concepts need to be managed, an approach for captur-
ing design metadata is available to start documenting 
what objects exist and what data needs to be mapped 
to them, and the PSA has begun recording transac-

tions from the connected operational systems.

However, it has not yet been determined how all of  
this should be applied. This is the role of the model. 
It is the model that de±nes what the data should look 
like at every stage of the solution.

Levels of abstraction
There is a distinction to make between different levels 
of modeling abstraction. Without going into too much 
detail, these can be classi±ed as more conceptual, 
more logical, or more physical.

Conceptual models focus on high-level represen-

tations of terms and concepts, their de±nition, and 
their interactions. A logical level is more focused on 
clearly-speci±ed entities, their types, attributes, and 
relationships. The physical model covers the techni-
cal implementation tailored to a speci±c database  
or technology.

The relationships between these different levels of 
abstraction can be recorded in design metadata  

— for example as a mapping between a logical model 
entity and a physical model table. These mappings can 
then be used to generate physical model structures 
using code generation templates. The physical model 
is often convention-based and can be derived from its 
more abstract logical version.

In the context of the engine, this distinction is impor-
tant. We often experience discussions that focus on 
differences of opinion at the physical level (e.g., table 
structures, speci±c columns), when there is suf±cient 
agreement at the logical level.

Using the engine, the focus is placed more on the logi-
cal level and above — the physical level can be automat- 

ically generated, and is subject to improvements as 
determined by the  optimizer and its directives.

We will predominantly use the term ‘information mod- 

el’ (or simply ‘model’), particularly when contrasting 
certain design decisions with the physical model. We’ll 
leave the exact level of abstraction intentionally ²exible, 
as this is subject to different opinions and does not 
materially affect how the engine operates.

Developers can choose to work directly with physical 
models, apply these to design metadata, and generate 
the solution accordingly. Alternatively, they can de- 

±ne a more abstract, business driven representation  
—what we refer to as the information model— and use 
conventions to derive a physical version.
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Mapping data to the model
An important piece of design metadata to capture is the relation- 

ship between data sources and model objects. What data needs to  
go where? This relationship often becomes apparent during the  
data modeling efforts, but can also be added later. This key piece  
of information is required to generate the data logistics processes 
that populate the model.

When the model is complete, it effectively has become part of the 
design metadata. In other words, the design metadata contains  
a representation of the model.

When the model changes, these changes must be re²ected in the 
design metadata as well, so that the solution can be automatically 
adjusted to re²ect this updated de±nition of data.

Code generation templates 

Code generation automates the production of data solution  
components.

To generate the necessary code, both code generation templates 
and design metadata are required as inputs. Together, these inputs 
can be compiled into executable data logistics processes or object 
artifacts tailored to a speci±c platform or environment.

A design pattern de±nes the goals and outcomes for a concept or 
component, and the code generation template speci±es the corre-

sponding technical implementation. Templates are typically de- 

scribed using a Domain Speci±c Language, making them interpretable 
by a compiler or runtime engine.

The outputs of this process can include programming code, SQL 
scripts, or proprietary objects for various data technologies. They 
cover all aspects of the data solution, including data objects (tables, 
views, ±les), data logistics processes, scripts, and even infrastructure 
and connectivity.

We refer to this as model-driven code generation. The model,  
as encapsulated in the design metadata, drives the output  
based on the selected code generation templates.

The challenges of manual development
Historically, developing data logistics processes has been a manual 
and resource-intensive task. This made it one of the most time-con-

suming aspects of data solution development. The overhead caused 
by manual (re)development, maintenance, and testing of the many 
involved data logistics processes has traditionally been a major 
barrier for refactoring.

Pattern-based approaches, combined 
with code generation, can mitigate 
many of these issues.

Manual development also often imposed 
restrictions on developing truly scalable 
data solutions. For instance, in model-
ing techniques such as Data Vault or 
Anchor Modeling, each data set associ- 

ated with a context table and its corre-

sponding core business concept table 
typically requires its own independent 
data logistics process. These processes, 
while following the same pattern, are 
unique and may number in the hun-

dreds or thousands.

With manual development, the trade-off 
between creating potentially hundreds 
of seemingly redundant data logistics 
processes for long term scalability and 
short term delivery would usually favor 
the latter. However, code generation 
shifts this paradigm. By automating the 
production of these repetitive processes, 
code generation enables the scalability 
and high degree of parallelism in data 
processing that manual approaches 
struggle to achieve.

Following evolution
De±ning a collection of well-structured 
design patterns and code generation 
templates to deliver the data solution 
is essential for achieving ²exibility in 
delivery. Patterns and templates evolve 
over time, and this can sometimes lead 
to a desire to refactoring part, or even 
the entire data solution.

Investing in code generation supports 
a continuous evolution of the data solu-

tion. It allows you to easily incorporate 
and test new ideas and improvements. 
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This reduces the time to value because the output data logistics processes can be delivered  
faster, and more consistently. Code generation also helps to dramatically reduce technical  
debt when tweaks to the patterns are applied, since updates can automatically propagate  
throughout the solution.

It is a best practice to ensure the entire solution can be generated to effectively combat  
the inevitable accumulation of technical debt.

Lastly, one of the most important bene±ts is the consistency in delivery both in terms  
of time and quality. In our experience, businesses value consistent quality and reliable  
delivery timelines over speed with variability (though speed is still important).

By automating the generation of data logistics processes, teams can ensure predictable  
results while maintaining ²exibility and short delivery timelines.

Data logistics process control 

A data logistics process control framework (or simply, 
‘control framework’) is a structured set of procedures 
designed to govern the execution, orchestration, mon-
itoring, and logging of individual data processing  
and integration tasks.

A robust control framework is an essential require-
ment of any data solution, and intends to:  �Orchestrate data logistics process executions  �Provide logging and audit capabilities  �Simplify the management of the data solution  ��Enforce application-level transaction control  

(based on ACID principles)  �Enable recovery and restart in the event of failures

This section outlines the core requirements  
of a control framework. Further implementation  
details are covered in the  data logistics control  
framework section.

Orchestration of process execution
In some scenarios, it may be necessary to de±ne de-

pendencies between processes. Some processes have 
to run before others. While the approach outlined in 
this book aims to minimize dependencies where pos-

sible, you may ±nd cases where dependencies between 
data logistics processes are still required. This may be 
due to interface wait-states (e.g., waiting for call-re- 

sponse), performance reasons, interdependent business 
rules, or speci±c pattern design (e.g., key lookups).

For example, a separate delta-detection process might 
be required to capture data changes in a staging area 
before subsequent transformations can proceed.

Beyond managing execution order, orchestration and 
understanding dependencies can also be used to de-

tect and prevent issues such as race conditions, cache 
staleness, and referential integrity violations.

A good example is populating core business concept 
(key) tables in a parallel environment. Potentially many 
data integration processes can insert new keys in these 
central tables, but if two or more processes attempt to 
insert the same key at the same time a constraint vio-

lation may occur. A smart control framework can tem-
porarily suspend con²icting processes such as these.

Logging and audit capabilities
Regardless of whether the solution delivers data via 
views, functions, scripts or materialized objects (e.g., 
tables, indexed views, ±les), the control framework 
must record all activity for transparency and  
accountability.

The control framework tracks every unique process 
execution in a log or repository, and issues a unique 
execution instance identi±er. The data, processed via  
a data logistics process execution, will be stored with  
this unique identi±er so that it is always traceable 
which data was handled by which process, and when.

This attribute is called the Audit Trail Id.
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Using the Audit Trail Id, all materialized 
data is ‘tagged’ with a pointer corre- 

sponding to the unique process execu- 

tion that inserted or modi±ed the records.

For example, if a data logistics process 
inserts 100 records into a target table, 
the control framework logs the start 
and end times of this unique process 
execution, records the number of rows 
processed, and assigns a unique Audit 
Trail Id to those 100 records. As a result, 
the 100 records that have been inserted 
will all have the same Audit Trail Id.

In virtualized environments, the control 
framework logs view and function exe-

cutions, recording the user who issued 
the query and the exact version of the 
object accessed. This enables precise 
auditing and tracking of all interactions 
with the data solution.

Application-level transaction control
This ‘link’ between the control frame-

work and the data will also become 
important in preparing the data for 
downstream processing, including  
delivering data for consumption.

At various stages, it will be necessary 
to assert which data is consistent and 
available for next steps. Since the cont-
rol framework ‘knows’ what data is still 
being processed and what data is ready 
for further use, it supports the imple-

mentation of transaction control at the 
‘application level.’

This is similar to the ACID principles as 
mentioned in the previous PSA section. 
ACID encompasses a set of properties of 
database transactions intended to guar-
antee validity in events such as errors, 
outages and power failures. The control 
framework is used to apply similar con-

cepts across the data solution.

This can be used to prevent ‘dirty reads’ from the solution, and to 
implement associated locking strategies for data integration. Dirty 
reads occur when data can be accessed that has not been fully com-

mitted by the solution — when data logistics processes have not yet 
completed successfully.

Another use case is the ability to report on data latency, providing 
insights on data freshness — an important metric for managing  
data solutions.

Simplifying data solution management
Ideally, a process control framework is designed to be idempotent. 
In this context this means that the system remembers which tasks 
were run successfully, and re-runs only the failed tasks. To support 
this, the control framework captures the state of a process; whether 
it is running or completed, and if failures were encountered that 
require attention or can be reprocessed automatically.

For example, imagine a work²ow running ±ve tasks in a certain 
order. When a failure is encountered while running the fourth task, 
both the failing process as well as the work²ow will report failure. 
Upon rerun, the ±rst three tasks —which succeeded previously—  
can be skipped. The fourth task will then retry and, if successful,  
the ±fth task will be executed.

This mechanic helps in simplifying day-to-day management and 
monitoring, but is also important for protecting the consistency of 
the overall solution. For example, if the ±rst process in the above 
work²ow detects and loads change data delta (differential) from an 
operational system using a truncate & load pattern, then this data 
delta must be fully committed to all targets before it can be rerun. 
Otherwise, the data delta might be lost forever.

Version control 

With the fundamental components now in place, the engine is able to 
run on its own. However, in order to adjust independently, additional 
‘operations7’ components should to be added — the ±rst of which is 
versioning.

Versioning is the practice of tracking and saving changes made  
to solution artifacts. If you save something, the previous versions 
should be retrievable.

There are many versioning tools, plug-ins, and concepts available, 
and they should be used in the context of release management 

— where a de±ned group of changes can be grouped, tested and  
deployed as a ‘release.’
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With the engine concept, we take versioning a step further.

In the engine, versioning goes beyond standard version control for individual artifacts.  
Instead, it manages snapshots across the design metadata including the information model,  
the code generation templates and the data itself as an integrated unit.

This holistic approach captures the state of the entire data solution  
—including data integration logic and data— at any given point in time.

Engine versioning is based on two core premises:  �We can version all our design metadata and code generation templates together  �We can generate all our code, and rebuild the entire data delivery using the PSA concept

If both are true, then we can always (re)deploy the entire solution as it existed at a particular point in time.

In many cases, it is not even necessary to version-control the outputs of the code generation templates.  
After all, artifacts like data logistics processes can always be re-created as they were in a given version.  
Versioning only the design metadata and code generation templates suf±ces.

This capability even allows the solution to host multiple versions simultaneously. These versions can be com-
pared, tested, and optimized to determine which performs best or meets current requirements most effectively.

This approach transforms the data solution into a time-machine, enabling not just point-in-time restoration  
of the solution’s structure and logic, but also facilitating dynamic experimentation and validation across  
different solution versions. Unlike traditional bitemporal data systems, this versioning component applies  
to the entire solution, offering unparalleled ²exibility in managing both design and operations.

Refactoring 

Imagine you start capturing transactions (events, records) early  
in the development process using a PSA, but ±nalize your overall 
data solution design and model some time later.

In such cases, the ability to ‘replay’ these transactions as if they  
were processed at the time of their initial capture would be incred- 

ibly valuable.

After all, these transactions have already existed in the PSA for  
some time and represent the ‘transaction log’ of what happened.

Loading this historical data into the data solution requires that the 
involved data logistics processes have the capability to process data 
deterministically. A deterministic process is one that, when executed, 
consistently produces the same result given the same input values.

For a data solution, this means processing the same raw data will 
always yield the same result in the target table. Adding this capa- 

bility introduces some complexity to the pattern. However, while  
the pattern becomes more complex, this is offset by the ability  
to generate the code automatically.

Having a PSA is essential to do this. It 
drives the ability to refactor the solution 
in a deterministic way — a controlled 
process of restructuring existing code 
or design.

Re-initialization
The ability to replay history is referred 
to re-initialization. This involves trun-

cating parts of the model and reloading 
the corresponding data from the PSA. If 
the process is deterministic and nothing 
has changed, the results will be identi-
cal to the original output. If the code or 
model has been modi±ed, the historical 
transactions will be applied to the new 
version. With proper version control 
in place, it is even possible to revert to 
an earlier state and reproduce the data 
exactly as it was.
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To support re-initialization, data logistics processes 
must be able to handle multiple data changes in a 
single processing pass. This is one of the  funda-
mental principles of data logistics that underpin  
the data solution.

The ability to refactor and re-initialize is essential for 
iterative development. Solution designers can re±ne 
models and de±nitions over time, knowing they can 
refactor and reload the environment, or parts thereof, 
as needed.

Following the mindset of this book, change is inevitable 
and must be anticipated. Over time, we are likely  
to ±nd ²aws in our approach, our patterns, our un- 

derstanding of a given technology and let’s face it  
— our models and de±nitions of business terms as 
well. This is simply human nature, and goes back to 
the fundamental assumptions when dealing with data. 
Over time, our understanding of this complex matter 
will increase, and imperfections will be addressed 
while further developing and testing the system.

Embracing refactoring, supported by re-initialization, 
means you can afford some ²exibility while designing 
use cases. You always have the option to change your 
mind and refactor the design whenever it makes  
sense to do so.

The myth of a perfect model
Some argue that refactoring simply means you didn’t 
get it right the ±rst time. There seems to be a deeply 
rooted mindset in the data community that a data 
model should be 100 % correct after the initial design 
phase. Indeed, many data solution architectures rely 
on this, and choose not to have fallback mechanisms 

—like a PSA— in place. 

In reality, interpretations of data change often and few, 
if any, data solutions are perfect from the start. Have 
you ever encountered a data solution that was 100 % 
correct on the ±rst attempt, with the perfect data  
model and interpretations? In hindsight, haven’t you  
looked at past models and realized a different ap-

proach would have been better?

In some cases, a data solution can be refactored even 
after interpretations have been applied, but this can 
be complex and cumbersome. In other cases, refactor-

ing may be impossible if the required original data  
is not available anymore. This can happen when calcu-

lations or aggregations have transformed the original 
values into a new data element, but one that cannot 
be reversed into the original values — a ‘destructive’ 
transformation.

Contemporary modeling techniques aim to delay busi-
ness logic application until later in the architecture, 
after raw data integration and closer to the consump-

tion of the data. These techniques advocate that, while 
it takes time to deliver the single version of the truth, 
there is at least the notion of the ‘single version of the 
facts.’ Pushing business logic to delivery layers allows 
iterative exploration and re±nement of requirements.

However, even the core model and its corresponding 
data integration patterns can contain design ²aws. For 
instance, a raw Data Vault model might have decisions 
around business concepts or business keys that, in 
hindsight, could have been better. Modeling data re-

quires making interpretative decisions at every stage. 
This is why a PSA serves as the ultimate safety net.

In essence, downstream layers of the data solution 
become a form of schema-on-read applied to the raw 
data in the PSA. While data can still be persisted in 
various layers, the tools now in place allow teams to 
evolve their thinking and adapt designs as the orga- 

nization grows and changes.

Shifting the mindset
This shift requires modelers to embrace the idea that 
mistakes will happen, and designing for change is bet-
ter than attempting to achieve a perfect model upfront. 
The reality is that in every business there is diverging 
and often limited understanding of what data means, 
and it ‘is a process’ to get clarity and understanding 
how data should be accurately represented in models.

This perspective applies to design patterns and code 
generation templates as well. Models, concepts, tech-

nologies, and even methodologies evolve. Based on our 
own experience, we can say that even after working  
for decades in the ±eld, we still ±nd the occasional  
bug or encounter progressive thinking that would 
make us want to reload the environment in a slightly 
modi±ed version.
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In our opinion, refactoring is not a failure but an ac- 

knowledgment of progress — a way to adapt to new 
insights and evolving needs.

At this stage in the engine, the foundation is set for 
tweaking models, design patterns, or code generation 
templates to deliver updated versions of the data so-
lution — even at runtime.

Notification 

In addition to the data logistics process control  
framework, a monitoring framework is essential  
for pro-actively informing developers and support 
teams about the integrity of the system. Building a 
data solution requires to create trust in the available 
data for its users, and a robust monitoring framework 
is a powerful way to do so.

Functional and technical errors such as missing data, 
duplicates, large delays etc., will erode trust in the  
system and hinder its adoption and overall effective-

ness. This problem becomes worse when users them-

selves have to identify and report these issues.

A monitoring framework assists in preventing many 
of these issues from happening, and also fosters trust 
when issues are pro-actively investigated when they 
do occur.

The framework involves detection mechanisms to ²ag 
speci±c behavior based on prede±ned rules. When 
issues are detected, the noti±cation feature delivers 
these results to users and administrators for timely 
awareness and actioning.

The monitoring framework consists of a number of 
exception checks on the solution, as de±ned in the   testing framework. For example, asserting referen- 

tial integrity or consistency for logical groups of data.

The data logistics control framework also plays a cen-
tral role in enabling this functionality. It schedules  
and executes the tests and processes responsible  
for monitoring the system.

Monitoring tasks
Monitoring tasks are designed as standalone executa-
bles that can run independently, either manually or 
via the data logistics control framework. These tasks:  �Collect outcomes from various test cases  �Report on the health and quality of the environment  �Provide proactive insights into the solution’s state

Monitoring outcomes can also feed back into the 
engine as environmental metadata. These results can 
direct the engine to refactor parts of the solution auto-

matically, based on prede±ned directives. For example, 
system information such as CPU usage, memory pres-

sure and disk use can inform the optimizer to adjust 
settings or processes dynamically.

Noti±cation rules, as part of the monitoring tasks, 
can address a wide range of scenarios related to data 
solution integrity and performance, including but  
not limited to:

Adherence to conventions  ��Are table names consistently pre±xed or suf±xed 
according to agreed conventions?  ��Do core business concept tables include key  
attributes but exclude context attributes?  �Are all names in lower case?  ��Are ±le names appropriately structured,  
such as including a timestamp indicator?

Infrastructure and environment information  ��Do tables have the correct compression settings?  ��Is index fragmentation exceeding acceptable  
thresholds?  �Are query wait states increasing?  ��Does the I/O subsystem work as expected? Is disk 
space, latency, or read/write performance within 
expected parameters?

Latency and availability  ��How long does it take to complete one full refresh 
cycle across the data solution, where all involved 
processes have run at least once?  ��What is the current latency between receiving data 
deltas and making them available for reporting?  ��Are there any data logistics processes de±ned  
but inactive for over a month?
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Data consistency  ��To what point in time can referential integrity be 
assured in a continuously loading environment?  �Are there any orphan tables?  ��In case of 1:M relationships, does a relationship  
really change or was it a case of ‘ghost hunting?’��In case of N:M relationships, is this valid,  
or should it be a 1:M?

Data platform optimization  ��Are there full row duplicate records across  
the system?  ��Are certain areas experiencing a ‘²ip-²opping’  
effect (e.g., repeated inserts and logical deletes)?

Any functional checks on data content  �Does every invoice have an associated customer?  ��Are daily sales ±gures within 10 % of yesterday’s 
values at the same time?

An effective approach for noti±cation is establishing a 
common schema, and publishing events to a centrally 
accessible location. Examples of these could be the 
data logistics control framework event log, a database 
table exposed via a web page, dashboards, Slack,  
MS Teams, or Kafka topics.

Interested parties can then subscribe to these events, 
and treat these noti±cations with high priority.

Deployment automation 

At this stage, the engine can con±dently deliver spe-

ci±c versions of the data solution, including change 
or releases, ensuring that the entire solution can be 
generated and processed.

The next step is managing these releases in a de-

ployment operations framework, ultimately aimed at 
achieving continuous deployment. By incorporating 
a work²ow that is able to operate autonomously, the 
solution’s day-to-day deployment can be handed  
over to the engine, reducing human error.

A typical work²ow might look like this:  ��Commit changes to a central repository,  
using a feature branch

  ��Build and test the changes in a development  
environment  ��Initiate a deployment to a pre-production or integra-

tion environment to detect any unforeseen con²icts  �Release to production once validations are complete

This process can range from manual to semi-automated 
(e.g., trigger by commits) or fully automated (optimized 
by the engine). Implementation details are covered in 
the later sections on  automating deployment.

Continuous deployment
So far, this is a fairly straightforward ‘DevOps’ ap-

proach. But using the engine and its available meta-
data, we can further automate the development  
and refactoring efforts.

The design metadata ‘knows’ which upstream tables 
are impacted by changes. With this information, the 
engine is able to automatically generate the necessary 
code, update or truncate associated target tables,  
and adapt the solution accordingly.

This requires a robust, automated deployment  
mechanism that can perform the following actions:  �Deploy physical model changes  �Generate and execute data logistics code  ��Run test cases, log results and notify interested 

parties of exceptions  �Perform rollback in case of failure

The engine can trigger these ‘builds’ based on certain 
events. This can be a commit to a speci±c feature or re- 

lease branch, or as a result of rules captured in the  op- 

timizer. For instance, the monitoring framework may 
detect a high demand for certain datasets and refactor 
the code to optimize against these usage patterns.

‘Ops’ in the engine concept
Deployment automation aims to shorten the delivery 
cycle and produce higher quality results. But it is also 
intended to foster collaboration between data profession- 

als and consumers. Most importantly, it intends to fa-

cilitate communication between involved parties about 
the process of data design, integration and delivery. 
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It is about understanding deployment practices  
and see how these can be applied to data, for example:  ��Finding a suitable deployment frequency  

that meets business expectations  ��Involving stakeholders in the release process,  
by de±ning tests, performing post-implementation  
reviews and monitoring the outputs over time  ��Enabling stakeholders to contribute to the information model  
and corresponding design metadata, supported by versioning  ��Discuss directives for ongoing optimization of the data solution,  
for instance analyzing usage patterns to spot new opportunities 
and support decision making on prioritization

An automated deployment mindset helps engaging stakeholders ear-
ly in data design, involving process owners and operational systems 
administrator to work towards a full end-to-end data management 
approach that is running smoothly.

For example, you could de±ne two alternative designs for a subject 
area to see what works best. You could prototype different approach-
es for surrogate key distribution, and evaluate what works best in  
a given technical environment or concept. Or, you could consider 
table elimination from the model based on usage patterns. It is also 
possible to assert what physical delivery of your data solution has  
a better outcome for compute cost or I/O.

The engine can then automatically generate  
and deploy these improvements.

By embedding deployment automation within the engine, the data 
solution becomes a living, evolving system capable of adapting to 
new requirements. The engine not only streamlines deployment  
but also supports iterative experimentation, enabling teams to ex-

plore alternative approaches and optimize for performance, cost,  
or speci±c business needs.

Testing 

Traditional data solutions often adopt the principle of judging  
data on the way in, requiring data to meet strict quality standards 
before being accepted. This contrasts sharply with the philosophy  
of this book.

In our vision, all data is welcome. We don’t judge. In fact, we go to 
great lengths to make sure all data has a place, including data that 
can be considered ‘bad’ quality. We may not have the right context 
(at the right time) to make an upfront call on what is considered  
‘bad’ and ‘good’ for the consumers of the data.

And, what may be ‘bad’ for one con- 

sumer may be ‘good enough’ for an- 

other. In exceptional cases it may  
exactly be the ‘bad’ data that turns  
out to hold golden nuggets of value.

This is why we separate the collection  
of raw facts (e.g., via the PSA and the     back room concept) from their inter-

pretation, and it’s also where testing 
comes in. Testing, especially related to 
data validation and asserting if the data 
conforms to speci±c requirements, is a 
form of business logic — an interpreta-

tion of data.

However, the testing mechanism in  
the engine does not judge data and  
then bars it from entering the solu- 

tion. Rather, it provides a framework to  
monitor and understand the state of  
the data across multiple perspectives.

The role of testing in the engine
Testing in the engine serves  
two primary purposes:
1) �Tests capture the knowledge gained 

during design and implementation, 
and store this in a shared repository 
so that this can be reused during unit- 
and regression testing

2) �Tests are reused as ongoing controls 
to verify that the data solution con-

tinues to behave as expected in the 
monitoring framework

Both purposes share in an important 
feature; a central repository to which 
tests can be added. Test can be develo-

ped during the development process as 
unit tests or in response to issues, and 
act as a permanent record of require-

ments and expectations.

39 | 40



As a guideline, a test should be created every time an exception has been encountered to make 
sure this speci±c scenario can be monitored in the future. Developing the test also ensures  
that you properly understand the violation in requirements encountered.

In this sense, the terms ‘test’ and ‘control’ are used interchangeably. While testing is used more 
in a unit-testing context, and typically focuses more on correct business interpretation, the same 
artifact (test case) is used as a control (check) to ensure ongoing consistency of the data solution.

There is no hard and fast rule on what should be tested, but it pays off to embed any understand-
ing accumulated during development in the testing framework. At design and development 
time, a lot of business understanding is gained in a relatively short amount of time, and capturing 
this knowledge in a test case that outlines the expected behavior is a powerful way to embed this 
knowledge in the solution. This aligns with Gojko Adzic’s ‘Speci±cation by Example’ (2011),  
where examples are used to de±ne and validate system behavior.

Tests can be developed for a wide variety of scenarios, including but not limited to:  �Validating data against domain values  �Detecting uniqueness constraint violations  �Ensuring completeness of timelines in temporal data  ��Identifying outliers in sales or volume data using statistical thresholds  
(e.g., two standard deviations from the mean)  �Verifying referential integrity

Testing framework
A testing framework, of which many are available either as open source or as part  
of commercial software, at a minimum has the following functionality:  �A repository to store test cases  �A standardize format for writing test cases  �A set of evaluation functions (e.g., assertions, range checks, binary checks)  �A mechanism execute tests and display the results

Simply put, a functional testing framework allows one or more tests to be executed  
and the results of the performed tests to be returned. This allows tests to integrate with  
deployment automation for regression testing and with the monitoring framework.

The testing framework can be combined with the event log of the data logistics process  
control framework, providing a uni±ed monitoring point for the entire data solution.

Labeling data
Validating data is not the same as rejecting it. So how then should we act  
when the tests inform us of issues?

The solution is to ‘label’ the data that does not pass certain tests. This allows the data solution to 
manage data both in the incoming layers (‘back room’ in the data solution design) as well as the 
delivery layers (interpretation, ‘front room’) without physically ±ltering or removing the data.
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Optimizing using environmental metadata
As the system operates, environmental metadata is  

created. While design metadata drives the logical 
structure of the solution, environmental metadata 
records system performance, such as available re-

sources, processes execution times, memory and  
disk space.

Environmental metadata functions like a ‘sensor,’ 
monitoring system performance and apply this to 
determine the optimal physical implementation  
for a given directive or use case.

This is the ±nal component of the engine,  
the optimizer.

Through the optimizer, the engine is made aware of 
technological constraints and directives (parame-
ters). By interpreting the environmental metadata, 
and taking into account the directives, the engine  
can automatically refactor data structures and data 
logistics processes to make the most ef±cient use  
of the available technical environment.

Examples of this are:  �Normalize or denormalize data structures  �Select optimal aggregation strategies  �Choose the best key distribution technique

For example, the engine might assess whether hash 
keys, sequence values, or natural business keys are 
best ±t for a Data Vault implementation. Depending  
on the data pro±le, hash keys can be costly to store 
and retrieve. A typical hash key quickly requires  
16 or 20 bytes storage per key, whereas integer  
sequence keys typically only require 4 or 8 bytes.

However, sequence keys introduce dependencies 
which may impact overall data delivery requirements.  
A ‘middle’ option of using natural business keys can 
also be considered. This might require less storage 
space and does not incur processing dependencies.

Based on environmental metadata, the engine can 
dynamically select or even combine these methods  
for optimal performance.

Unless speci±c overrides are in place, decisions are 
driven by data pro±les and optimization directives 
(e.g., cost, compute, storage) rather than subjective 
preferences.

This is possible by interpreting the statistics and exe-

cution times from the data logistics control framework, 
as well as outputs received from the monitoring frame-
work. With this, the code can be re-generated using a 
different template, and the updated solution can be 
automatically deployed and re-initialized.

This process modi±es the physical delivery while  
maintaining consistency in the design metadata  

— automated refactoring.

Directives
The optimizer applies rules, directives, to determine 
how the data solution should operate. These opti- 

mization goals can be set by the administrator,  
and may include:  �Reducing compute or storage costs  ��Achieving speci±c data latency thresholds  

(data freshness, availability)  �Achieving speci±c data latency thresholds  �Balancing I/O, storage, or compute utilization  �Improving query performance for selected domains

The optimization process can be a fun and engaging 
way to manage the data solution.

Different implementation approaches can be simulated 
and compared (e.g., hash keys versus sequence keys) to 
determine the most effective approach for the environ-

ment. The optimization outputs also provide trans- 

parency that can be used to manage the environment  
— for the data team as well as the consumers of the data.

After all, delivering data solutions often involves a  
careful balance between resource (cost) constraints 
and business requirements.

Finite resources can be applied for speci±c outcomes, 
but it also makes the point that the sky is not always 
the limit, and that restricting certain resources will 
have an impact on important data solution metrics, 
such as latency.
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Environmental parameters

The ‘Engine’

Optimizer

Information Model

Design Patterns

Business Logic

Notification Refactoring

Data Logistics
Process Control

Version Control
Code Generation

Templates

Design Metadata Persistent Staging

Testing

Deployment
Automation

Starting the engine

When the engine components are fully con±gured, the data solution becomes an active  
system capable of rapid, reliable delivery. While information models and project plans still  
need thoughtful design, we know that the engine can deliver fast and consistent results  
and supports our journey in uncovering the meaning behind the data.

From the moment the ±rst data is processed, we can start understanding the effects the patterns 
have on the data. We can immediately see the initial results of our modeling decisions. Environ-

mental metadata begins ²owing in, allowing the optimizer to suggest or trigger re±nements.

With the engine, data professionals no longer need to focus on low-level physical data model  
decisions. Instead, methodologies and best practices are embedded into the engine as conven- 

tions, freeing teams to focus on higher-level goals such as innovation, collaboration, and  
alignment with business objectives.
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15  
Data Engine Thinking 
— taking the next step

Ready to put Data Engine Thinking into action? 

You’ve explored the principles — now it’s time to bring them to life in your organization.  
Whether you’re just getting started or ready to scale, we’re here to help you go further, faster. 

As your journey continues, we invite you to connect on 
https://dataenginethinking.com.

Our website has the latest information about the services we provide, including:  �Our training schedule  �Our coaching opportunities, including individual and team-based coaching  �Talent mentoring   �Assessments and reviews  �Consultancy 

Let’s unlock the full potential of your data together. 
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